-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit a446e1d
Showing
238 changed files
with
354,578 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
docs | ||
logs | ||
output | ||
reference | ||
SoVITS_weights | ||
GPT_weights | ||
TEMP | ||
.git |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
.DS_Store | ||
.vscode | ||
__pycache__ | ||
*.pyc | ||
env | ||
runtime | ||
.idea | ||
output | ||
logs | ||
reference | ||
GPT_weights | ||
SoVITS_weights | ||
GPT_weights_v2 | ||
SoVITS_weights_v2 | ||
TEMP | ||
weight.json | ||
ffmpeg* | ||
ffprobe* | ||
pretrained_models |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
5bba782a5e9196166233b9ab12ba04cadff9ef9212b4ff6153ed9290ff679025 /workspace/tools/damo_asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/model.pb | ||
b3be75be477f0780277f3bae0fe489f48718f585f3a6e45d7dd1fbb1a4255fc5 /workspace/tools/damo_asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch/model.pb | ||
a5818bb9d933805a916eebe41eb41648f7f9caad30b4bd59d56f3ca135421916 /workspace/tools/damo_asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/model.pb |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# Download moda ASR related models | ||
from modelscope import snapshot_download | ||
model_dir = snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',revision="v2.0.4") | ||
model_dir = snapshot_download('damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',revision="v2.0.4") | ||
model_dir = snapshot_download('damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',revision="v2.0.4") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
#!/usr/bin/env bash | ||
|
||
set -Eeuo pipefail | ||
|
||
echo "Downloading models..." | ||
|
||
aria2c --disable-ipv6 --input-file /workspace/Docker/links.txt --dir /workspace --continue | ||
|
||
echo "Checking SHA256..." | ||
|
||
parallel --will-cite -a /workspace/Docker/links.sha256 "echo -n {} | sha256sum -c" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
b1c1e17e9c99547a89388f72048cd6e1b41b5a18b170e86a46dfde0324d63eb1 /workspace/GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt | ||
fc579c1db3c1e21b721001cf99d7a584214280df19b002e200b630a34fa06eb8 /workspace/GPT_SoVITS/pretrained_models/s2D488k.pth | ||
020a014e1e01e550e510f2f61fae5e5f5b6aab40f15c22f1f12f724df507e835 /workspace/GPT_SoVITS/pretrained_models/s2G488k.pth | ||
24164f129c66499d1346e2aa55f183250c223161ec2770c0da3d3b08cf432d3c /workspace/GPT_SoVITS/pretrained_models/chinese-hubert-base/pytorch_model.bin | ||
e53a693acc59ace251d143d068096ae0d7b79e4b1b503fa84c9dcf576448c1d8 /workspace/GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large/pytorch_model.bin | ||
39796caa5db18d7f9382d8ac997ac967bfd85f7761014bb807d2543cc844ef05 /workspace/tools/uvr5/uvr5_weights/HP2_all_vocals.pth | ||
45e6b65199e781b4a6542002699be9f19cd3d1cb7d1558bc2bfbcd84674dfe28 /workspace/tools/uvr5/uvr5_weights/HP3_all_vocals.pth | ||
5908891829634926119720241e8573d97cbeb8277110a7512bdb0bd7563258ee /workspace/tools/uvr5/uvr5_weights/HP5_only_main_vocal.pth | ||
8c8fd1582f9aabc363e47af62ddb88df6cae7e064cae75bbf041a067a5e0aee2 /workspace/tools/uvr5/uvr5_weights/VR-DeEchoAggressive.pth | ||
01376dd2a571bf3cb9cced680732726d2d732609d09216a610b0d110f133febe /workspace/tools/uvr5/uvr5_weights/VR-DeEchoDeReverb.pth | ||
56aba59db3bcdd14a14464e62f3129698ecdea62eee0f003b9360923eb3ac79e /workspace/tools/uvr5/uvr5_weights/VR-DeEchoNormal.pth | ||
233bb5c6aaa365e568659a0a81211746fa881f8f47f82d9e864fce1f7692db80 /workspace/tools/uvr5/uvr5_weights/onnx_dereverb_By_FoxJoy/vocals.onnx |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# GPT-SoVITS models | ||
https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/s1bert25hz-2kh-longer-epoch%3D68e-step%3D50232.ckpt | ||
out=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt | ||
https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/s2D488k.pth | ||
out=GPT_SoVITS/pretrained_models/s2D488k.pth | ||
https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/s2G488k.pth | ||
out=GPT_SoVITS/pretrained_models/s2G488k.pth | ||
https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-hubert-base/config.json | ||
out=GPT_SoVITS/pretrained_models/chinese-hubert-base/config.json | ||
https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-hubert-base/preprocessor_config.json | ||
out=GPT_SoVITS/pretrained_models/chinese-hubert-base/preprocessor_config.json | ||
https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-hubert-base/pytorch_model.bin | ||
out=GPT_SoVITS/pretrained_models/chinese-hubert-base/pytorch_model.bin | ||
https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-roberta-wwm-ext-large/config.json | ||
out=GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large/config.json | ||
https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-roberta-wwm-ext-large/pytorch_model.bin | ||
out=GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large/pytorch_model.bin | ||
https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-roberta-wwm-ext-large/tokenizer.json | ||
out=GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large/tokenizer.json | ||
# UVR5 | ||
https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2_all_vocals.pth | ||
out=tools/uvr5/uvr5_weights/HP2_all_vocals.pth | ||
https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP3_all_vocals.pth | ||
out=tools/uvr5/uvr5_weights/HP3_all_vocals.pth | ||
https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5_only_main_vocal.pth | ||
out=tools/uvr5/uvr5_weights/HP5_only_main_vocal.pth | ||
https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/VR-DeEchoAggressive.pth | ||
out=tools/uvr5/uvr5_weights/VR-DeEchoAggressive.pth | ||
https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/VR-DeEchoDeReverb.pth | ||
out=tools/uvr5/uvr5_weights/VR-DeEchoDeReverb.pth | ||
https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/VR-DeEchoNormal.pth | ||
out=tools/uvr5/uvr5_weights/VR-DeEchoNormal.pth | ||
https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/onnx_dereverb_By_FoxJoy/vocals.onnx | ||
out=tools/uvr5/uvr5_weights/onnx_dereverb_By_FoxJoy/vocals.onnx |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
# Base CUDA image | ||
FROM cnstark/pytorch:2.0.1-py3.9.17-cuda11.8.0-ubuntu20.04 | ||
|
||
LABEL maintainer="[email protected]" | ||
LABEL version="dev-20240209" | ||
LABEL description="Docker image for GPT-SoVITS" | ||
|
||
|
||
# Install 3rd party apps | ||
ENV DEBIAN_FRONTEND=noninteractive | ||
ENV TZ=Etc/UTC | ||
RUN apt-get update && \ | ||
apt-get install -y --no-install-recommends tzdata ffmpeg libsox-dev parallel aria2 git git-lfs && \ | ||
git lfs install && \ | ||
rm -rf /var/lib/apt/lists/* | ||
|
||
# Copy only requirements.txt initially to leverage Docker cache | ||
WORKDIR /workspace | ||
COPY requirements.txt /workspace/ | ||
RUN pip install --no-cache-dir -r requirements.txt | ||
|
||
# Define a build-time argument for image type | ||
ARG IMAGE_TYPE=full | ||
|
||
# Conditional logic based on the IMAGE_TYPE argument | ||
# Always copy the Docker directory, but only use it if IMAGE_TYPE is not "elite" | ||
COPY ./Docker /workspace/Docker | ||
# elite 类型的镜像里面不包含额外的模型 | ||
RUN if [ "$IMAGE_TYPE" != "elite" ]; then \ | ||
chmod +x /workspace/Docker/download.sh && \ | ||
/workspace/Docker/download.sh && \ | ||
python /workspace/Docker/download.py && \ | ||
python -m nltk.downloader averaged_perceptron_tagger cmudict; \ | ||
fi | ||
|
||
|
||
# Copy the rest of the application | ||
COPY . /workspace | ||
|
||
EXPOSE 9871 9872 9873 9874 9880 | ||
|
||
CMD ["python", "webui.py"] |
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/bucket_sampler.py | ||
# reference: https://github.com/lifeiteng/vall-e | ||
import itertools | ||
import math | ||
import random | ||
from random import shuffle | ||
from typing import Iterator | ||
from typing import Optional | ||
from typing import TypeVar | ||
|
||
import torch | ||
import torch.distributed as dist | ||
from torch.utils.data import Dataset | ||
from torch.utils.data import Sampler | ||
|
||
__all__ = [ | ||
"DistributedBucketSampler", | ||
] | ||
|
||
T_co = TypeVar("T_co", covariant=True) | ||
|
||
|
||
class DistributedBucketSampler(Sampler[T_co]): | ||
r""" | ||
sort the dataset wrt. input length | ||
divide samples into buckets | ||
sort within buckets | ||
divide buckets into batches | ||
sort batches | ||
""" | ||
|
||
def __init__( | ||
self, | ||
dataset: Dataset, | ||
num_replicas: Optional[int] = None, | ||
rank: Optional[int] = None, | ||
shuffle: bool = True, | ||
seed: int = 0, | ||
drop_last: bool = False, | ||
batch_size: int = 32, | ||
) -> None: | ||
if num_replicas is None: | ||
if not dist.is_available(): | ||
raise RuntimeError("Requires distributed package to be available") | ||
num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1 | ||
if rank is None: | ||
if not dist.is_available(): | ||
raise RuntimeError("Requires distributed package to be available") | ||
rank = dist.get_rank() if torch.cuda.is_available() else 0 | ||
if torch.cuda.is_available(): | ||
torch.cuda.set_device(rank) | ||
if rank >= num_replicas or rank < 0: | ||
raise ValueError( | ||
"Invalid rank {}, rank should be in the interval" | ||
" [0, {}]".format(rank, num_replicas - 1) | ||
) | ||
self.dataset = dataset | ||
self.num_replicas = num_replicas | ||
self.rank = rank | ||
self.epoch = 0 | ||
self.drop_last = drop_last | ||
# If the dataset length is evenly divisible by # of replicas, then there | ||
# is no need to drop any data, since the dataset will be split equally. | ||
if ( | ||
self.drop_last and len(self.dataset) % self.num_replicas != 0 | ||
): # type: ignore[arg-type] | ||
# Split to nearest available length that is evenly divisible. | ||
# This is to ensure each rank receives the same amount of data when | ||
# using this Sampler. | ||
self.num_samples = math.ceil( | ||
(len(self.dataset) - self.num_replicas) | ||
/ self.num_replicas # type: ignore[arg-type] | ||
) | ||
else: | ||
self.num_samples = math.ceil( | ||
len(self.dataset) / self.num_replicas | ||
) # type: ignore[arg-type] | ||
self.total_size = self.num_samples * self.num_replicas | ||
self.shuffle = shuffle | ||
self.seed = seed | ||
self.batch_size = batch_size | ||
self.id_with_length = self._get_sample_lengths() | ||
self.id_buckets = self.make_buckets(bucket_width=2.0) | ||
|
||
def _get_sample_lengths(self): | ||
id_with_lengths = [] | ||
for i in range(len(self.dataset)): | ||
id_with_lengths.append((i, self.dataset.get_sample_length(i))) | ||
id_with_lengths.sort(key=lambda x: x[1]) | ||
return id_with_lengths | ||
|
||
def make_buckets(self, bucket_width: float = 2.0): | ||
buckets = [] | ||
cur = [] | ||
max_sec = bucket_width | ||
for id, sec in self.id_with_length: | ||
if sec < max_sec: | ||
cur.append(id) | ||
else: | ||
buckets.append(cur) | ||
cur = [id] | ||
max_sec += bucket_width | ||
if len(cur) > 0: | ||
buckets.append(cur) | ||
return buckets | ||
|
||
def __iter__(self) -> Iterator[T_co]: | ||
if self.shuffle: | ||
# deterministically shuffle based on epoch and seed | ||
g = torch.Generator() | ||
g.manual_seed(self.seed + self.epoch) | ||
random.seed(self.epoch + self.seed) | ||
shuffled_bucket = [] | ||
for buc in self.id_buckets: | ||
buc_copy = buc.copy() | ||
shuffle(buc_copy) | ||
shuffled_bucket.append(buc_copy) | ||
grouped_batch_size = self.batch_size * self.num_replicas | ||
shuffled_bucket = list(itertools.chain(*shuffled_bucket)) | ||
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size)) | ||
batches = [ | ||
shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size] | ||
for b in range(n_batch) | ||
] | ||
shuffle(batches) | ||
indices = list(itertools.chain(*batches)) | ||
else: | ||
# type: ignore[arg-type] | ||
indices = list(range(len(self.dataset))) | ||
|
||
if not self.drop_last: | ||
# add extra samples to make it evenly divisible | ||
padding_size = self.total_size - len(indices) | ||
if padding_size <= len(indices): | ||
indices += indices[:padding_size] | ||
else: | ||
indices += (indices * math.ceil(padding_size / len(indices)))[ | ||
:padding_size | ||
] | ||
else: | ||
# remove tail of data to make it evenly divisible. | ||
indices = indices[: self.total_size] | ||
assert len(indices) == self.total_size | ||
|
||
# subsample | ||
indices = indices[self.rank : self.total_size : self.num_replicas] | ||
assert len(indices) == self.num_samples | ||
|
||
return iter(indices) | ||
|
||
def __len__(self) -> int: | ||
return self.num_samples | ||
|
||
def set_epoch(self, epoch: int) -> None: | ||
r""" | ||
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas | ||
use a different random ordering for each epoch. Otherwise, the next iteration of this | ||
sampler will yield the same ordering. | ||
Args: | ||
epoch (int): Epoch number. | ||
""" | ||
self.epoch = epoch |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/data_module.py | ||
# reference: https://github.com/lifeiteng/vall-e | ||
from pytorch_lightning import LightningDataModule | ||
from AR.data.bucket_sampler import DistributedBucketSampler | ||
from AR.data.dataset import Text2SemanticDataset | ||
from torch.utils.data import DataLoader | ||
|
||
|
||
class Text2SemanticDataModule(LightningDataModule): | ||
def __init__( | ||
self, | ||
config, | ||
train_semantic_path, | ||
train_phoneme_path, | ||
dev_semantic_path=None, | ||
dev_phoneme_path=None, | ||
): | ||
super().__init__() | ||
self.config = config | ||
self.train_semantic_path = train_semantic_path | ||
self.train_phoneme_path = train_phoneme_path | ||
self.dev_semantic_path = dev_semantic_path | ||
self.dev_phoneme_path = dev_phoneme_path | ||
self.num_workers = self.config["data"]["num_workers"] | ||
|
||
def prepare_data(self): | ||
pass | ||
|
||
def setup(self, stage=None, output_logs=False): | ||
self._train_dataset = Text2SemanticDataset( | ||
phoneme_path=self.train_phoneme_path, | ||
semantic_path=self.train_semantic_path, | ||
max_sec=self.config["data"]["max_sec"], | ||
pad_val=self.config["data"]["pad_val"], | ||
) | ||
self._dev_dataset = self._train_dataset | ||
# self._dev_dataset = Text2SemanticDataset( | ||
# phoneme_path=self.dev_phoneme_path, | ||
# semantic_path=self.dev_semantic_path, | ||
# max_sample=self.config['data']['max_eval_sample'], | ||
# max_sec=self.config['data']['max_sec'], | ||
# pad_val=self.config['data']['pad_val']) | ||
|
||
def train_dataloader(self): | ||
batch_size=self.config["train"]["batch_size"]//2 if self.config["train"].get("if_dpo",False)==True else self.config["train"]["batch_size"] | ||
batch_size = max(min(batch_size,len(self._train_dataset)//4),1)#防止不保存 | ||
sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size) | ||
return DataLoader( | ||
self._train_dataset, | ||
batch_size=batch_size, | ||
sampler=sampler, | ||
collate_fn=self._train_dataset.collate, | ||
num_workers=self.num_workers, | ||
persistent_workers=True, | ||
prefetch_factor=16, | ||
) | ||
|
||
def val_dataloader(self): | ||
return DataLoader( | ||
self._dev_dataset, | ||
batch_size=1, | ||
shuffle=False, | ||
collate_fn=self._train_dataset.collate, | ||
num_workers=max(self.num_workers, 12), | ||
persistent_workers=True, | ||
prefetch_factor=16, | ||
) | ||
|
||
# 这个会使用到嘛? | ||
def test_dataloader(self): | ||
return DataLoader( | ||
self._dev_dataset, | ||
batch_size=1, | ||
shuffle=False, | ||
collate_fn=self._train_dataset.collate, | ||
) |
Oops, something went wrong.