Skip to content

Add Floyd-Warshall #97

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 13, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,8 @@ a set of rules that precisely define a sequence of operations.
* `A` [Hamiltonian Cycle](src/algorithms/graph/hamiltonian-cycle) - Visit every vertex exactly once
* `A` [Strongly Connected Components](src/algorithms/graph/strongly-connected-components) - Kosaraju's algorithm
* `A` [Travelling Salesman Problem](src/algorithms/graph/travelling-salesman) - shortest possible route that visits each city and returns to the origin city
* **Uncategorized**
* `A` [Floyd-Warshall algorithm](src/algorithms/graph/floyd-warshall) - a single execution of the algorithm will find the lengths (summed weights) of shortest paths between all pairs of vertices
* **Uncategorized**
* `B` [Tower of Hanoi](src/algorithms/uncategorized/hanoi-tower)
* `B` [Square Matrix Rotation](src/algorithms/uncategorized/square-matrix-rotation) - in-place algorithm
* `B` [Jump Game](src/algorithms/uncategorized/jump-game) - backtracking, dynamic programming (top-down + bottom-up) and greedy examples
Expand Down
5 changes: 3 additions & 2 deletions README.zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ _Read this in other languages:_
* [归并排序](src/algorithms/sorting/merge-sort)
* [快速排序](src/algorithms/sorting/quick-sort)
* [希尔排序](src/algorithms/sorting/shell-sort)
* **树**
* **树**
* [深度优先搜索](src/algorithms/tree/depth-first-search) (DFS)
* [广度优先搜索](src/algorithms/tree/breadth-first-search) (BFS)
* **图**
Expand All @@ -87,7 +87,8 @@ _Read this in other languages:_
* [哈密顿图](src/algorithms/graph/hamiltonian-cycle) - 恰好访问每个顶点一次
* [强连通分量](src/algorithms/graph/strongly-connected-components) - Kosaraju算法
* [旅行推销员问题](src/algorithms/graph/travelling-salesman) - 尽可能以最短的路线访问每个城市并返回原始城市
* **未分类**
* [Floyd-Warshall algorithm](src/algorithms/graph/floyd-warshall) - 一次循环可以找出所有顶点之间的最短路径
* **未分类**
* [汉诺塔](src/algorithms/uncategorized/hanoi-tower)
* [八皇后问题](src/algorithms/uncategorized/n-queens)
* [骑士巡逻](src/algorithms/uncategorized/knight-tour)
Expand Down
5 changes: 3 additions & 2 deletions README.zh-TW.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ _Read this in other languages:_
* [合併排序](src/algorithms/sorting/merge-sort)
* [快速排序](src/algorithms/sorting/quick-sort)
* [希爾排序](src/algorithms/sorting/shell-sort)
* **樹**
* **樹**
* [深度優先搜尋](src/algorithms/tree/depth-first-search) (DFS)
* [廣度優先搜尋](src/algorithms/tree/breadth-first-search) (BFS)
* **圖**
Expand All @@ -86,7 +86,8 @@ _Read this in other languages:_
* [漢彌爾頓環](src/algorithms/graph/hamiltonian-cycle) - Visit every vertex exactly once
* [強連通組件](src/algorithms/graph/strongly-connected-components) - Kosaraju's algorithm
* [旅行推銷員問題](src/algorithms/graph/travelling-salesman) - shortest possible route that visits each city and returns to the origin city
* **未分類**
* [Floyd-Warshall algorithm](src/algorithms/graph/floyd-warshall) - 一次循环可以找出所有頂點之间的最短路徑
* **未分類**
* [河內塔](src/algorithms/uncategorized/hanoi-tower)
* [N-皇后問題](src/algorithms/uncategorized/n-queens)
* [騎士走棋盤](src/algorithms/uncategorized/knight-tour)
Expand Down
5 changes: 5 additions & 0 deletions src/algorithms/graph/floyd-warshall/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Floyd–Warshall algorithm

## References

- [Wikipedia](https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm)
121 changes: 121 additions & 0 deletions src/algorithms/graph/floyd-warshall/__test__/floydWarshall.test.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
import GraphVertex from '../../../../data-structures/graph/GraphVertex';
import GraphEdge from '../../../../data-structures/graph/GraphEdge';
import Graph from '../../../../data-structures/graph/Graph';
import floydWarshall from '../floydWarshall';

describe('floydWarshall', () => {
it('should find minimum paths to all vertices for undirected graph', () => {
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const vertexE = new GraphVertex('E');
const vertexF = new GraphVertex('F');
const vertexG = new GraphVertex('G');
const vertexH = new GraphVertex('H');

const edgeAB = new GraphEdge(vertexA, vertexB, 4);
const edgeAE = new GraphEdge(vertexA, vertexE, 7);
const edgeAC = new GraphEdge(vertexA, vertexC, 3);
const edgeBC = new GraphEdge(vertexB, vertexC, 6);
const edgeBD = new GraphEdge(vertexB, vertexD, 5);
const edgeEC = new GraphEdge(vertexE, vertexC, 8);
const edgeED = new GraphEdge(vertexE, vertexD, 2);
const edgeDC = new GraphEdge(vertexD, vertexC, 11);
const edgeDG = new GraphEdge(vertexD, vertexG, 10);
const edgeDF = new GraphEdge(vertexD, vertexF, 2);
const edgeFG = new GraphEdge(vertexF, vertexG, 3);
const edgeEG = new GraphEdge(vertexE, vertexG, 5);

const graph = new Graph();
graph
.addVertex(vertexH)
.addEdge(edgeAB)
.addEdge(edgeAE)
.addEdge(edgeAC)
.addEdge(edgeBC)
.addEdge(edgeBD)
.addEdge(edgeEC)
.addEdge(edgeED)
.addEdge(edgeDC)
.addEdge(edgeDG)
.addEdge(edgeDF)
.addEdge(edgeFG)
.addEdge(edgeEG);

const { distances, previousVertices } = floydWarshall(graph);

const vertices = graph.getAllVertices();
const vertexAIndex = vertices.indexOf(vertexA);
const vl = vertices.length;

expect(distances[vertexAIndex][vertices.indexOf(vertexH)][vl]).toBe(Infinity);
expect(distances[vertexAIndex][vertexAIndex][vl]).toBe(0);
expect(distances[vertexAIndex][vertices.indexOf(vertexB)][vl]).toBe(4);
expect(distances[vertexAIndex][vertices.indexOf(vertexE)][vl]).toBe(7);
expect(distances[vertexAIndex][vertices.indexOf(vertexC)][vl]).toBe(3);
expect(distances[vertexAIndex][vertices.indexOf(vertexD)][vl]).toBe(9);
expect(distances[vertexAIndex][vertices.indexOf(vertexG)][vl]).toBe(12);
expect(distances[vertexAIndex][vertices.indexOf(vertexF)][vl]).toBe(11);

expect(previousVertices[vertexAIndex][vertices.indexOf(vertexF)][vl]).toBe(vertexD);
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexD)][vl]).toBe(vertexB);
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexB)][vl]).toBe(vertexA);
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexG)][vl]).toBe(vertexE);
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexC)][vl]).toBe(vertexA);
expect(previousVertices[vertexAIndex][vertexAIndex][vl]).toBe(null);
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexH)][vl]).toBe(null);
});

it('should find minimum paths to all vertices for directed graph with negative edge weights', () => {
const vertexS = new GraphVertex('S');
const vertexE = new GraphVertex('E');
const vertexA = new GraphVertex('A');
const vertexD = new GraphVertex('D');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexH = new GraphVertex('H');

const edgeSE = new GraphEdge(vertexS, vertexE, 8);
const edgeSA = new GraphEdge(vertexS, vertexA, 10);
const edgeED = new GraphEdge(vertexE, vertexD, 1);
const edgeDA = new GraphEdge(vertexD, vertexA, -4);
const edgeDC = new GraphEdge(vertexD, vertexC, -1);
const edgeAC = new GraphEdge(vertexA, vertexC, 2);
const edgeCB = new GraphEdge(vertexC, vertexB, -2);
const edgeBA = new GraphEdge(vertexB, vertexA, 1);

const graph = new Graph(true);
graph
.addVertex(vertexH)
.addEdge(edgeSE)
.addEdge(edgeSA)
.addEdge(edgeED)
.addEdge(edgeDA)
.addEdge(edgeDC)
.addEdge(edgeAC)
.addEdge(edgeCB)
.addEdge(edgeBA);

const { distances, previousVertices } = floydWarshall(graph);

const vertices = graph.getAllVertices();
const vertexSIndex = vertices.indexOf(vertexS);
const vl = vertices.length;

expect(distances[vertexSIndex][vertices.indexOf(vertexH)][vl]).toBe(Infinity);
expect(distances[vertexSIndex][vertexSIndex][vl]).toBe(0);
expect(distances[vertexSIndex][vertices.indexOf(vertexA)][vl]).toBe(5);
expect(distances[vertexSIndex][vertices.indexOf(vertexB)][vl]).toBe(5);
expect(distances[vertexSIndex][vertices.indexOf(vertexC)][vl]).toBe(7);
expect(distances[vertexSIndex][vertices.indexOf(vertexD)][vl]).toBe(9);
expect(distances[vertexSIndex][vertices.indexOf(vertexE)][vl]).toBe(8);

expect(previousVertices[vertexSIndex][vertices.indexOf(vertexH)][vl]).toBe(null);
expect(previousVertices[vertexSIndex][vertexSIndex][vl]).toBe(null);
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexB)][vl]).toBe(vertexC);
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexC)][vl]).toBe(vertexA);
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexA)][vl]).toBe(vertexD);
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexD)][vl]).toBe(vertexE);
});
});
60 changes: 60 additions & 0 deletions src/algorithms/graph/floyd-warshall/floydWarshall.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
export default function floydWarshall(graph) {
const vertices = graph.getAllVertices();

// Three dimension matrices.
const distances = [];
const previousVertices = [];

// There are k vertices, loop from 0 to k.
for (let k = 0; k <= vertices.length; k += 1) {
// Path starts from vertex i.
vertices.forEach((vertex, i) => {
if (k === 0) {
distances[i] = [];
previousVertices[i] = [];
}

// Path ends to vertex j.
vertices.forEach((endVertex, j) => {
if (k === 0) {
// Initialize distance and previousVertices array
distances[i][j] = [];
previousVertices[i][j] = [];

if (vertex === endVertex) {
// Distance to self as 0
distances[i][j][k] = 0;
// Previous vertex to self as null
previousVertices[i][j][k] = null;
} else {
const edge = graph.findEdge(vertex, endVertex);
if (edge) {
// There is an edge from vertex i to vertex j.
// Save distance and previous vertex.
distances[i][j][k] = edge.weight;
previousVertices[i][j][k] = vertex;
} else {
distances[i][j][k] = Infinity;
previousVertices[i][j][k] = null;
}
}
} else {
// Compare distance from i to j, with distance from i to k - 1 and then from k - 1 to j.
// Save the shortest distance and previous vertex
// distance[i][j][k] = min( distance[i][k - 1][k - 1], distance[k - 1][j][k - 1] )
if (distances[i][j][k - 1] > distances[i][k - 1][k - 1] + distances[k - 1][j][k - 1]) {
distances[i][j][k] = distances[i][k - 1][k - 1] + distances[k - 1][j][k - 1];
previousVertices[i][j][k] = previousVertices[k - 1][j][k - 1];
} else {
distances[i][j][k] = distances[i][j][k - 1];
previousVertices[i][j][k] = previousVertices[i][j][k - 1];
}
}
});
});
}

// Shortest distance from x to y: distance[x][y][k]
// Previous vertex when shortest distance from x to y: previousVertices[x][y][k]
return { distances, previousVertices };
}