Skip to content

Resources for the data science/machine learning journal club @ WFAIS UJ

Notifications You must be signed in to change notification settings

rmldj/data-science-journal-club

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 

Repository files navigation

Data science/machine learning journal club at WFAIS UJ

This repository contains pdf files, code and data from our data science/machine learning journal club.

Journal clubs

2016/2017

  1. ML101: Some Python Data Science Resources and scikit-learn examples (Romuald Janik)

  2. Unsupervised learning - clustering (Jacek Tabor, II UJ)

  3. Deep learning and TensorFlow (Elżbieta Richter-Wąs)

  4. MapReduce - Hadoop (Piotr Białas)

  5. TensorFlow (Maciej Chociej, Google)

  6. More on Convolutional Neural Networks (Romuald Janik)

  7. Generative Adversarial Networks. Overview and applications (Rafał Cycoń, FORNAX)

  8. The Unreasonable Effectiveness of RNN: an introduction to recurrent neural networks (Przemek Witaszczyk)

  9. ​Introduction to ICA (Jacek Tabor, II UJ)

  10. Data Science with Python (Piotr Białas)

  11. Introduction to Reinforcement Learning (Rafał Józefowicz, OpenAI)

  12. Binary classifiers and receiver operating characteristic curves (ROC curve) (Piotr Białas)

  13. A recipe for simple effective models (Michael Abbott)

  14. ​Criticality and Deep Learning (Przemek Witaszczyk)

  15. "Fornax.ai and ESA "Data Adventures" hackaton and what we have learned" (Piotr Warchoł, Przemek Witaszczyk)

2017/2018

  1. Deep Neural Networks and the Information Bottleneck method (Piotr Warchoł) [M.Kac Seminar]

  2. Variational autoencoders (Igor Podolak, II UJ)

  3. Mastering the game of Go without human knowledge (Piotr Białas)

  4. A multi-instance deep neural network classifier: application to Higgs boson CP measurement (Piotr Białas)

  5. Pushing state-of-the art in transcriptomics and metagenomics on the road to personalized medicine (Paweł Łabaj, Bioinformatics Research Group)

2018/2019

  1. The input-output Jacobian and initialization of neural networks - our contribution for ResNets and some earlier results (Piotr Warchoł)

  2. Deep processing of structured data (Aleksandra Nowak and Łukasz Maziarka, II UJ)

  3. Adversarial Examples (Piotr Białas)

  4. Improving convergence of stochastic gradient descent (Jarek Duda, II UJ)

  5. Contrastive model explanations, an overview (Wojciech Sobala, IBM)

About

Resources for the data science/machine learning journal club @ WFAIS UJ

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published