Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Migrate glu_backward from the TH to Aten (CPU) #24708

Closed
VitalyFedyunin opened this issue Aug 16, 2019 · 0 comments
Closed

Migrate glu_backward from the TH to Aten (CPU) #24708

VitalyFedyunin opened this issue Aug 16, 2019 · 0 comments
Labels
better-engineering Relatively self-contained tasks for better engineering contributors module: porting Issues related to porting TH/THNN legacy to ATen native triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module

Comments

@VitalyFedyunin
Copy link
Contributor

Porting TH operators is essential for code simplicity and performance reasons.

Porting guides and Q&A are available in umbrella issue: #24507

Feel free to add @VitalyFedyunin as a reviewer to get a prioritized review.

@VitalyFedyunin VitalyFedyunin added better-engineering Relatively self-contained tasks for better engineering contributors module: operators module: porting Issues related to porting TH/THNN legacy to ATen native triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module labels Aug 16, 2019
facebook-github-bot pushed a commit that referenced this issue Feb 28, 2020
Summary:
This PR move glu to Aten(CPU).
Test script:
```
import torch
import torch.nn.functional as F
import time

torch.manual_seed(0)

def _time():
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    return time.time()

device = "cpu"

#warm up
for n in [10, 100, 1000, 10000]:
    input = torch.randn(128, n, requires_grad=True, device=device)
    grad_output = torch.ones(128, n // 2, device=device)
    for i in range(1000):
        output = F.glu(input)
        output.backward(grad_output)

for n in [10, 100, 1000, 10000]:
    fwd_t = 0
    bwd_t = 0
    input = torch.randn(128, n, requires_grad=True, device=device)
    grad_output = torch.ones(128, n // 2, device=device)
    for i in range(10000):
        t1 = _time()
        output = F.glu(input)
        t2 = _time()
        output.backward(grad_output)
        t3 = _time()
        fwd_t = fwd_t + (t2 -t1)
        bwd_t = bwd_t + (t3 - t2)
    fwd_avg = fwd_t / 10000 * 1000
    bwd_avg = bwd_t / 10000 * 1000
    print("input size(128, %d) forward time is %.2f (ms); backwad avg time is %.2f (ms)."
          % (n, fwd_avg, bwd_avg))
```
Test device: **skx-8180.**
Before:
```
input size(128, 10) forward time is 0.04 (ms); backwad avg time is 0.08 (ms).
input size(128, 100) forward time is 0.06 (ms); backwad avg time is 0.14 (ms).
input size(128, 1000) forward time is 0.11 (ms); backwad avg time is 0.31 (ms).
input size(128, 10000) forward time is 1.52 (ms); backwad avg time is 2.04 (ms).
```
After:
```
input size(128, 10) forward time is 0.02 (ms); backwad avg time is 0.05 (ms).
input size(128, 100) forward time is 0.04 (ms); backwad avg time is 0.09 (ms).
input size(128, 1000) forward time is 0.07 (ms); backwad avg time is 0.17 (ms).
input size(128, 10000) forward time is 0.13 (ms); backwad avg time is 1.03 (ms).
```
Fix #24707, #24708.
Pull Request resolved: #33179

Differential Revision: D19839835

Pulled By: VitalyFedyunin

fbshipit-source-id: e4d3438556a1068da2c4a7e573d6bbf8d2a6e2b9
ttumiel pushed a commit to ttumiel/pytorch that referenced this issue Mar 4, 2020
Summary:
This PR move glu to Aten(CPU).
Test script:
```
import torch
import torch.nn.functional as F
import time

torch.manual_seed(0)

def _time():
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    return time.time()

device = "cpu"

#warm up
for n in [10, 100, 1000, 10000]:
    input = torch.randn(128, n, requires_grad=True, device=device)
    grad_output = torch.ones(128, n // 2, device=device)
    for i in range(1000):
        output = F.glu(input)
        output.backward(grad_output)

for n in [10, 100, 1000, 10000]:
    fwd_t = 0
    bwd_t = 0
    input = torch.randn(128, n, requires_grad=True, device=device)
    grad_output = torch.ones(128, n // 2, device=device)
    for i in range(10000):
        t1 = _time()
        output = F.glu(input)
        t2 = _time()
        output.backward(grad_output)
        t3 = _time()
        fwd_t = fwd_t + (t2 -t1)
        bwd_t = bwd_t + (t3 - t2)
    fwd_avg = fwd_t / 10000 * 1000
    bwd_avg = bwd_t / 10000 * 1000
    print("input size(128, %d) forward time is %.2f (ms); backwad avg time is %.2f (ms)."
          % (n, fwd_avg, bwd_avg))
```
Test device: **skx-8180.**
Before:
```
input size(128, 10) forward time is 0.04 (ms); backwad avg time is 0.08 (ms).
input size(128, 100) forward time is 0.06 (ms); backwad avg time is 0.14 (ms).
input size(128, 1000) forward time is 0.11 (ms); backwad avg time is 0.31 (ms).
input size(128, 10000) forward time is 1.52 (ms); backwad avg time is 2.04 (ms).
```
After:
```
input size(128, 10) forward time is 0.02 (ms); backwad avg time is 0.05 (ms).
input size(128, 100) forward time is 0.04 (ms); backwad avg time is 0.09 (ms).
input size(128, 1000) forward time is 0.07 (ms); backwad avg time is 0.17 (ms).
input size(128, 10000) forward time is 0.13 (ms); backwad avg time is 1.03 (ms).
```
Fix pytorch#24707, pytorch#24708.
Pull Request resolved: pytorch#33179

Differential Revision: D19839835

Pulled By: VitalyFedyunin

fbshipit-source-id: e4d3438556a1068da2c4a7e573d6bbf8d2a6e2b9
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
better-engineering Relatively self-contained tasks for better engineering contributors module: porting Issues related to porting TH/THNN legacy to ATen native triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module
Projects
None yet
Development

No branches or pull requests

1 participant