Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve too large physical ashift handling. #13798

Merged
merged 1 commit into from
Sep 8, 2022
Merged

Conversation

amotin
Copy link
Member

@amotin amotin commented Aug 24, 2022

When iterating through children physical ashifts for vdev, prefer
ones above the maximum logical ashift, that we can actually use,
but withing the administrator defined maximum.

When selecting top-level vdev ashift, do not set it to the defined
maximum in case physical ashift is even higher, but just ignore one.
Using the maximum does not prevent misaligned writes, but reduces
space efficiency. Since ZFS tries to write data sequentially and
aggregates the writes, in many cases large misanigned writes may be
not as bad as the space penalty otherwise.

Allow internal physical ashifts for vdevs higher than SHIFT_MAX.
May be one day allocator or aggregation could benefit from that.

Reduce zfs_vdev_max_auto_ashift default from 16 (64KB) to 14 (16KB),
so that ZFS may still use bigger ashifts up to SHIFT_MAX (64KB),
but only if it really has to or explicitly told to, but not as an
"optimization".

There are some read-intensive NVMe SSDs that report Preferred Write
Alignment of 64KB, and attempt to build RAIDZ2 of those leads to a
space inefficiency that can't be justified. Instead these changes
make ZFS fall back to logical ashift of 12 (4KB) by default and
only warn user that it may be suboptimal for performance.

Types of changes

  • Bug fix (non-breaking change which fixes an issue)
  • New feature (non-breaking change which adds functionality)
  • Performance enhancement (non-breaking change which improves efficiency)
  • Code cleanup (non-breaking change which makes code smaller or more readable)
  • Breaking change (fix or feature that would cause existing functionality to change)
  • Library ABI change (libzfs, libzfs_core, libnvpair, libuutil and libzfsbootenv)
  • Documentation (a change to man pages or other documentation)

Checklist:

@amotin amotin requested review from a user, behlendorf and grwilson August 24, 2022 18:35
@amotin amotin added the Status: Code Review Needed Ready for review and testing label Aug 24, 2022
if (vd->vdev_physical_ashift <= ASHIFT_MAX)
vs->vs_physical_ashift = vd->vdev_physical_ashift;
else
vs->vs_physical_ashift = 0;
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is for vdev stats, is reporting 0 more useful than the actual value?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It makes user-space to not complain about "suboptimal" ashift that is too big to even be set. I later found that user-space also uses the ASHIFT_MAX define, but I am not sure it is very good in case kernel and user-space get out of sync.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But I am open to other thoughts about this.

When iterating through children physical ashifts for vdev, prefer
ones above the maximum logical ashift, that we can actually use,
but within the administrator defined maximum.

When selecting top-level vdev ashift, do not set it to the defined
maximum in case physical ashift is even higher, but just ignore one.
Using the maximum does not prevent misaligned writes, but reduces
space efficiency.  Since ZFS tries to write data sequentially and
aggregates the writes, in many cases large misanigned writes may be
not as bad as the space penalty otherwise.

Allow internal physical ashifts for vdevs higher than SHIFT_MAX.
May be one day allocator or aggregation could benefit from that.

Reduce zfs_vdev_max_auto_ashift default from 16 (64KB) to 14 (16KB),
so that ZFS may still use bigger ashifts up to SHIFT_MAX (64KB),
but only if it really has to or explicitly told to, but not as an
"optimization".

There are some read-intensive NVMe SSDs that report Preferred Write
Alignment of 64KB, and attempt to build RAIDZ2 of those leads to a
space inefficiency that can't be justified.  Instead these changes
make ZFS fall back to logical ashift of 12 (4KB) by default and
only warn user that it may be suboptimal for performance.

Signed-off-by:	Alexander Motin <[email protected]>
Sponsored by:	iXsystems, Inc.
@behlendorf behlendorf added Status: Accepted Ready to integrate (reviewed, tested) and removed Status: Code Review Needed Ready for review and testing labels Sep 2, 2022
@behlendorf behlendorf merged commit 37f6845 into openzfs:master Sep 8, 2022
beren12 pushed a commit to beren12/zfs that referenced this pull request Sep 19, 2022
When iterating through children physical ashifts for vdev, prefer
ones above the maximum logical ashift, that we can actually use,
but within the administrator defined maximum.

When selecting top-level vdev ashift, do not set it to the defined
maximum in case physical ashift is even higher, but just ignore one.
Using the maximum does not prevent misaligned writes, but reduces
space efficiency.  Since ZFS tries to write data sequentially and
aggregates the writes, in many cases large misanigned writes may be
not as bad as the space penalty otherwise.

Allow internal physical ashifts for vdevs higher than SHIFT_MAX.
May be one day allocator or aggregation could benefit from that.

Reduce zfs_vdev_max_auto_ashift default from 16 (64KB) to 14 (16KB),
so that ZFS may still use bigger ashifts up to SHIFT_MAX (64KB),
but only if it really has to or explicitly told to, but not as an
"optimization".

There are some read-intensive NVMe SSDs that report Preferred Write
Alignment of 64KB, and attempt to build RAIDZ2 of those leads to a
space inefficiency that can't be justified.  Instead these changes
make ZFS fall back to logical ashift of 12 (4KB) by default and
only warn user that it may be suboptimal for performance.

Reviewed-by: Brian Behlendorf <[email protected]>
Reviewed-by: Ryan Moeller <[email protected]>
Signed-off-by:	Alexander Motin <[email protected]>
Sponsored by:	iXsystems, Inc.
Closes openzfs#13798
tonyhutter pushed a commit to tonyhutter/zfs that referenced this pull request Sep 21, 2022
When iterating through children physical ashifts for vdev, prefer
ones above the maximum logical ashift, that we can actually use,
but within the administrator defined maximum.

When selecting top-level vdev ashift, do not set it to the defined
maximum in case physical ashift is even higher, but just ignore one.
Using the maximum does not prevent misaligned writes, but reduces
space efficiency.  Since ZFS tries to write data sequentially and
aggregates the writes, in many cases large misanigned writes may be
not as bad as the space penalty otherwise.

Allow internal physical ashifts for vdevs higher than SHIFT_MAX.
May be one day allocator or aggregation could benefit from that.

Reduce zfs_vdev_max_auto_ashift default from 16 (64KB) to 14 (16KB),
so that ZFS may still use bigger ashifts up to SHIFT_MAX (64KB),
but only if it really has to or explicitly told to, but not as an
"optimization".

There are some read-intensive NVMe SSDs that report Preferred Write
Alignment of 64KB, and attempt to build RAIDZ2 of those leads to a
space inefficiency that can't be justified.  Instead these changes
make ZFS fall back to logical ashift of 12 (4KB) by default and
only warn user that it may be suboptimal for performance.

Reviewed-by: Brian Behlendorf <[email protected]>
Reviewed-by: Ryan Moeller <[email protected]>
Signed-off-by:	Alexander Motin <[email protected]>
Sponsored by:	iXsystems, Inc.
Closes openzfs#13798
tonyhutter pushed a commit to tonyhutter/zfs that referenced this pull request Sep 22, 2022
When iterating through children physical ashifts for vdev, prefer
ones above the maximum logical ashift, that we can actually use,
but within the administrator defined maximum.

When selecting top-level vdev ashift, do not set it to the defined
maximum in case physical ashift is even higher, but just ignore one.
Using the maximum does not prevent misaligned writes, but reduces
space efficiency.  Since ZFS tries to write data sequentially and
aggregates the writes, in many cases large misanigned writes may be
not as bad as the space penalty otherwise.

Allow internal physical ashifts for vdevs higher than SHIFT_MAX.
May be one day allocator or aggregation could benefit from that.

Reduce zfs_vdev_max_auto_ashift default from 16 (64KB) to 14 (16KB),
so that ZFS may still use bigger ashifts up to SHIFT_MAX (64KB),
but only if it really has to or explicitly told to, but not as an
"optimization".

There are some read-intensive NVMe SSDs that report Preferred Write
Alignment of 64KB, and attempt to build RAIDZ2 of those leads to a
space inefficiency that can't be justified.  Instead these changes
make ZFS fall back to logical ashift of 12 (4KB) by default and
only warn user that it may be suboptimal for performance.

Reviewed-by: Brian Behlendorf <[email protected]>
Reviewed-by: Ryan Moeller <[email protected]>
Signed-off-by:	Alexander Motin <[email protected]>
Sponsored by:	iXsystems, Inc.
Closes openzfs#13798
@amotin amotin deleted the ashift branch October 9, 2023 13:22
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Status: Accepted Ready to integrate (reviewed, tested)
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants