-
Notifications
You must be signed in to change notification settings - Fork 2.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Feature] Support Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets #2194
Changes from all commits
e9e196f
d5e79fa
23c9fd7
f4022fb
e1cc800
33156d0
1ca1780
69b49cd
e4a9dd7
1fc898c
f537397
c222684
280b175
2aaa757
dd59be3
62bcc1a
70b2853
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
dataset_type = 'FaceOccludedDataset' | ||
data_root = 'data/occlusion-aware-face-dataset' | ||
crop_size = (512, 512) | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
dict(type='Resize', img_scale=(512, 512)), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='RandomRotate', degree=(-30, 30), prob=0.5), | ||
dict(type='PhotoMetricDistortion'), | ||
dict( | ||
type='Normalize', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
to_rgb=True), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']) | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=(512, 512), | ||
img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], | ||
flip=True, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='ResizeToMultiple', size_divisor=32), | ||
dict(type='RandomFlip'), | ||
dict( | ||
type='Normalize', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
to_rgb=True), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']) | ||
]) | ||
] | ||
|
||
dataset_train_A = dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='NatOcc_hand_sot/img', | ||
ann_dir='NatOcc_hand_sot/mask', | ||
split='train.txt', | ||
pipeline=train_pipeline) | ||
|
||
dataset_train_B = dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='NatOcc_object/img', | ||
ann_dir='NatOcc_object/mask', | ||
split='train.txt', | ||
pipeline=train_pipeline) | ||
|
||
dataset_train_C = dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='RandOcc/img', | ||
ann_dir='RandOcc/mask', | ||
split='train.txt', | ||
pipeline=train_pipeline) | ||
|
||
dataset_valid = dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='RealOcc/image', | ||
ann_dir='RealOcc/mask', | ||
split='RealOcc/split/val.txt', | ||
pipeline=test_pipeline) | ||
|
||
data = dict( | ||
samples_per_gpu=2, | ||
workers_per_gpu=2, | ||
train=[dataset_train_A, dataset_train_B, dataset_train_C], | ||
val=dataset_valid) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
# + | ||
_base_ = '../_base_/datasets/occlude_face.py' | ||
norm_cfg = dict(type='SyncBN', requires_grad=True) | ||
model = dict( | ||
type='EncoderDecoder', | ||
pretrained='open-mmlab://resnet101_v1c', | ||
backbone=dict( | ||
type='ResNetV1c', | ||
depth=101, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
dilations=(1, 1, 2, 4), | ||
strides=(1, 2, 1, 1), | ||
norm_cfg=dict(type='SyncBN', requires_grad=True), | ||
norm_eval=False, | ||
style='pytorch', | ||
contract_dilation=True), | ||
decode_head=dict( | ||
type='DepthwiseSeparableASPPHead', | ||
in_channels=2048, | ||
in_index=3, | ||
channels=512, | ||
dilations=(1, 12, 24, 36), | ||
c1_in_channels=256, | ||
c1_channels=48, | ||
dropout_ratio=0.1, | ||
num_classes=2, | ||
norm_cfg=dict(type='SyncBN', requires_grad=True), | ||
align_corners=False, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), | ||
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)), | ||
auxiliary_head=dict( | ||
type='FCNHead', | ||
in_channels=1024, | ||
in_index=2, | ||
channels=256, | ||
num_convs=1, | ||
concat_input=False, | ||
dropout_ratio=0.1, | ||
num_classes=2, | ||
norm_cfg=dict(type='SyncBN', requires_grad=True), | ||
align_corners=False, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), | ||
train_cfg=dict(), | ||
test_cfg=dict(mode='whole')) | ||
log_config = dict( | ||
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)]) | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] | ||
cudnn_benchmark = True | ||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) | ||
optimizer_config = dict() | ||
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False) | ||
runner = dict(type='IterBasedRunner', max_iters=30000) | ||
checkpoint_config = dict(by_epoch=False, interval=400) | ||
evaluation = dict( | ||
interval=400, metric=['mIoU', 'mDice', 'mFscore'], pre_eval=True) | ||
auto_resume = False |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,5 @@ | ||
<!-- #region --> | ||
|
||
## Prepare datasets | ||
|
||
It is recommended to symlink the dataset root to `$MMSEGMENTATION/data`. | ||
|
@@ -138,6 +140,21 @@ mmsegmentation | |
│ │ ├── ann_dir | ||
│ │ │ ├── train | ||
│ │ │ ├── val | ||
│ ├── occlusion-aware-face-dataset | ||
│ │ ├── train.txt | ||
│ │ ├── NatOcc_hand_sot | ||
│ │ │ ├── img | ||
│ │ │ ├── mask | ||
│ │ ├── NatOcc_object | ||
│ │ │ ├── img | ||
│ │ │ ├── mask | ||
│ │ ├── RandOcc | ||
│ │ │ ├── img | ||
│ │ │ ├── mask | ||
│ │ ├── RealOcc | ||
│ │ │ ├── img | ||
│ │ │ ├── mask | ||
│ │ │ ├── split | ||
``` | ||
|
||
### Cityscapes | ||
|
@@ -376,3 +393,190 @@ python tools/convert_datasets/isaid.py /path/to/iSAID | |
``` | ||
|
||
In our default setting (`patch_width`=896, `patch_height`=896, `overlap_area`=384), it will generate 33978 images for training and 11644 images for validation. | ||
|
||
### Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets | ||
|
||
The dataset is generated by two techniques, Naturalistic occlusion generation, Random occlusion generation. you must install face-occlusion-generation and dataset. see more guide in https://github.com/kennyvoo/face-occlusion-generation.git | ||
|
||
## Dataset Preparation | ||
|
||
step 1 | ||
|
||
Create a folder for data generation materials on mmsegmentation folder. | ||
|
||
```shell | ||
mkdir data_materials | ||
``` | ||
|
||
step 2 | ||
|
||
Please download the masks (11k-hands_mask.7z,CelebAMask-HQ-masks_corrected.7z) from this [drive](https://drive.google.com/drive/folders/15nZETWlGMdcKY6aHbchRsWkUI42KTNs5?usp=sharing) | ||
|
||
Please download the images from [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ), [11k Hands.zip](https://sites.google.com/view/11khands) and [dtd-r1.0.1.tar.gz](https://www.robots.ox.ac.uk/~vgg/data/dtd/). | ||
|
||
step 3 | ||
|
||
Download a upsampled COCO objects images and masks (coco_object.7z). files can be found in this [drive](https://drive.google.com/drive/folders/15nZETWlGMdcKY6aHbchRsWkUI42KTNs5?usp=sharing). | ||
|
||
Download CelebAMask-HQ and 11k Hands images split txt files. (11k_hands_sample.txt, CelebAMask-HQ-WO-train.txt) found in [drive](https://drive.google.com/drive/folders/15nZETWlGMdcKY6aHbchRsWkUI42KTNs5?usp=sharing). | ||
|
||
download file to ./data_materials | ||
|
||
```none | ||
CelebAMask-HQ.zip | ||
CelebAMask-HQ-masks_corrected.7z | ||
CelebAMask-HQ-WO-train.txt | ||
RealOcc.7z | ||
RealOcc-Wild.7z | ||
11k-hands_mask.7z | ||
11k Hands.zip | ||
11k_hands_sample.txt | ||
coco_object.7z | ||
dtd-r1.0.1.tar.gz | ||
``` | ||
|
||
______________________________________________________________________ | ||
|
||
```bash | ||
apt-get install p7zip-full | ||
|
||
cd data_materials | ||
|
||
#make occlusion-aware-face-dataset folder | ||
mkdir path-to-mmsegmentaion/data/occlusion-aware-face-dataset | ||
|
||
#extract celebAMask-HQ and split by train-set | ||
unzip CelebAMask-HQ.zip | ||
7za x CelebAMask-HQ-masks_corrected.7z -o./CelebAMask-HQ | ||
#copy training data to train-image-folder | ||
rsync -a ./CelebAMask-HQ/CelebA-HQ-img/ --files-from=./CelebAMask-HQ-WO-train.txt ./CelebAMask-HQ-WO-Train_img | ||
#create a file-name txt file for copying mask | ||
basename -s .jpg ./CelebAMask-HQ-WO-Train_img/* > train.txt | ||
#add .png to file-name txt file | ||
xargs -n 1 -i echo {}.png < train.txt > mask_train.txt | ||
#copy training data to train-mask-folder | ||
rsync -a ./CelebAMask-HQ/CelebAMask-HQ-masks_corrected/ --files-from=./mask_train.txt ./CelebAMask-HQ-WO-Train_mask | ||
mv train.txt ../data/occlusion-aware-face-dataset | ||
|
||
#extract DTD | ||
tar -zxvf dtd-r1.0.1.tar.gz | ||
mv dtd DTD | ||
|
||
#extract hands dataset and split by 200 samples | ||
7za x 11k-hands_masks.7z -o. | ||
unzip Hands.zip | ||
rsync -a ./Hands/ --files-from=./11k_hands_sample.txt ./11k-hands_img | ||
|
||
#extract upscaled coco object | ||
7za x coco_object.7z -o. | ||
mv coco_object/* . | ||
|
||
#extract validation set | ||
7za x RealOcc.7z -o../data/occlusion-aware-face-dataset | ||
|
||
``` | ||
|
||
**Dataset material Organization:** | ||
|
||
```none | ||
|
||
├── data_materials | ||
│ ├── CelebAMask-HQ-WO-Train_img | ||
│ │ ├── {image}.jpg | ||
│ ├── CelebAMask-HQ-WO-Train_mask | ||
│ │ ├── {mask}.png | ||
│ ├── DTD | ||
│ │ ├── images | ||
│ │ │ ├── {classA} | ||
│ │ │ │ ├── {image}.jpg | ||
│ │ │ ├── {classB} | ||
│ │ │ │ ├── {image}.jpg | ||
│ ├── 11k-hands_img | ||
│ │ ├── {image}.jpg | ||
│ ├── 11k-hands_mask | ||
│ │ ├── {mask}.png | ||
│ ├── object_image_sr | ||
│ │ ├── {image}.jpg | ||
│ ├── object_mask_x4 | ||
│ │ ├── {mask}.png | ||
|
||
``` | ||
|
||
## Data Generation | ||
|
||
```bash | ||
git clone https://github.com/kennyvoo/face-occlusion-generation.git | ||
cd face_occlusion-generation | ||
``` | ||
|
||
Example script to generate NatOcc hand dataset | ||
|
||
```bash | ||
CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \ | ||
--config ./configs/natocc_hand.yaml \ | ||
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/NatOcc_hand_sot"\ | ||
AUGMENTATION.SOT True \ | ||
SOURCE_DATASET.IMG_DIR "path/to/data_materials/CelebAMask-HQ-WO-Train_img" \ | ||
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \ | ||
OCCLUDER_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/11k-hands_img" \ | ||
OCCLUDER_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/11k-hands_masks" | ||
Comment on lines
+520
to
+522
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The '/' should be added to the end of the address, otherwise, the mask image will not be found. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes, and i have fix the problem and PR it to the author. Try git pull the latest version |
||
``` | ||
|
||
Example script to generate NatOcc object dataset | ||
|
||
```bash | ||
CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \ | ||
--config ./configs/natocc_objects.yaml \ | ||
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/NatOcc_object" \ | ||
SOURCE_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_img" \ | ||
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \ | ||
OCCLUDER_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/object_image_sr" \ | ||
OCCLUDER_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/object_mask_x4" | ||
``` | ||
|
||
Example script to generate RandOcc dataset | ||
|
||
```bash | ||
CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \ | ||
--config ./configs/randocc.yaml \ | ||
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/RandOcc" \ | ||
SOURCE_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_img/" \ | ||
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \ | ||
OCCLUDER_DATASET.IMG_DIR "path/to/jw93/mmsegmentation/data_materials/DTD/images" | ||
``` | ||
|
||
**Dataset Organization:** | ||
|
||
```none | ||
├── data | ||
│ ├── occlusion-aware-face-dataset | ||
│ │ ├── train.txt | ||
│ │ ├── NatOcc_hand_sot | ||
│ │ │ ├── img | ||
│ │ │ │ ├── {image}.jpg | ||
│ │ │ ├── mask | ||
│ │ │ │ ├── {mask}.png | ||
│ │ ├── NatOcc_object | ||
│ │ │ ├── img | ||
│ │ │ │ ├── {image}.jpg | ||
│ │ │ ├── mask | ||
│ │ │ │ ├── {mask}.png | ||
│ │ ├── RandOcc | ||
│ │ │ ├── img | ||
│ │ │ │ ├── {image}.jpg | ||
│ │ │ ├── mask | ||
│ │ │ │ ├── {mask}.png | ||
│ │ ├── RealOcc | ||
│ │ │ ├── img | ||
│ │ │ │ ├── {image}.jpg | ||
│ │ │ ├── mask | ||
│ │ │ │ ├── {mask}.png | ||
│ │ │ ├── split | ||
│ │ │ │ ├── val.txt | ||
``` | ||
|
||
<!-- #endregion --> | ||
|
||
```python | ||
|
||
``` |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I suggest creating the folder
occlusion-aware-face-dataset
first.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
okay