-
Notifications
You must be signed in to change notification settings - Fork 3.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[CUDA] Preload dependent DLLs #23674
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I published a test package to ORT-Nightly feed and tried it. It worked well.
The package version is 1.21.0.dev20250214005
Installation instructions:
pip3 install flatbuffers numpy packaging protobuf sympy coloredlogs
pip3 install --user --pre --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple/ onnxruntime-gpu[cuda,cudnn]
### Description Update preload_dlls: (1) Add a parameter `directory` to specify the DLL location. (2) In Windows, skip loading CUDA/cuDNN dlls when torch for cuda 12.x has been imported. (3) In Windows, default search order for CUDA/cuDNN dlls: lib directory of torch for cuda 12.x in Windows; nvidia site packages; default DLL loading paths. User can use the directory parameter to change search order. Use empty string will change search order to `nvidia site packages; default DLL loading paths`. Use a path if user wants to load DLLs from a specific location. (4) Do not load cudnn sub DLLs in Linux. The benefit of such change is that ORT could work seamlessly with PyTorch in both Linux and Windows. We also provide option for advanced users to load CUDA/cuDNN from a location specified by them. ### Examples in Windows By default, preload_dlls will load CUDA and cuDNN DLLs from PyTorch if it is compatible: ``` >>> import onnxruntime >>> onnxruntime.preload_dlls() >>> onnxruntime.print_debug_info() onnxruntime-gpu version: 1.21.0 CUDA version used in build: 12.6 platform: Windows-10-10.0.22631-SP0 Python package, version and location: onnxruntime==1.20.1 at c:\users\abcd\.conda\envs\py310\lib\site-packages\onnxruntime onnxruntime-gpu==1.21.0 at c:\users\abcd\.conda\envs\py310\lib\site-packages\onnxruntime WARNING: multiple onnxruntime packages are installed to the same location. Please 'pip uninstall` all above packages, then `pip install` only one of them. torch==2.6.0+cu126 at c:\users\abcd\.conda\envs\py310\lib\site-packages\torch nvidia-cuda-runtime-cu12==12.8.57 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-cudnn-cu12==9.7.1.26 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-cublas-cu12==12.8.3.14 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-cufft-cu12==11.3.3.41 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-curand-cu12==10.3.7.77 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-cuda-nvrtc-cu12==12.6.85 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-nvjitlink-cu12==12.8.61 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia Environment variable: PATH=c:\users\abcd\.conda\envs\py310;c:\users\abcd\.conda\envs\py310\Library\usr\bin;c:\users\abcd\.conda\envs\py310\Library\bin;c:\users\abcd\.conda\envs\py310\Scripts;c:\users\abcd\.conda\envs\py310\bin;C:\ProgramData\anaconda3\condabin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\libnvvp;C:\windows\system32; List of loaded DLLs: c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_adv64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_precompiled64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cufft64_11.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cublasLt64_12.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_ops64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cublas64_12.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_heuristic64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_runtime_compiled64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_graph64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\numpy.libs\msvcp140-263139962577ecda4cd9469ca360a746.dll c:\users\abcd\.conda\envs\py310\msvcp140.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudart64_12.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn64_9.dll c:\users\abcd\.conda\envs\py310\vcruntime140_1.dll c:\users\abcd\.conda\envs\py310\msvcp140_1.dll c:\users\abcd\.conda\envs\py310\vcruntime140.dll Device information: { "gpu": { "driver_version": "571.96", "devices": [ { "memory_total": 8589934592, "memory_available": 6032777216, "name": "NVIDIA GeForce GTX 1080" } ] }, "cpu": { "brand": "Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz", "cores": 10, "logical_cores": 20, "hz": "3696000000,0", "l2_cache": 10485760, "flags": "3dnow,3dnowprefetch,abm,acpi,adx,aes,apic,avx,avx2,avx512bw,avx512cd,avx512dq,avx512f,avx512vl,avx512vnni,bmi1,bmi2,clflush,clflushopt,clwb,cmov,cx16,cx8,de,dtes64,dts,erms,est,f16c,fma,fpu,fxsr,ht,hypervisor,ia64,invpcid,lahf_lm,mca,mce,mmx,monitor,movbe,mpx,msr,mtrr,osxsave,pae,pat,pbe,pcid,pclmulqdq,pdcm,pge,pni,popcnt,pqe,pqm,pse,pse36,rdrnd,rdseed,sep,serial,smap,smep,ss,sse,sse2,sse4_1,sse4_2,ssse3,tm,tm2,tsc,tscdeadline,vme,x2apic,xsave,xtpr", "processor": "Intel64 Family 6 Model 85 Stepping 7, GenuineIntel" }, "memory": { "total": 68414291968, "available": 40240791552 } } >>> import torch ``` In below example, we set `directory=""`, which prefers nvidia site package like the following: ``` >>> import onnxruntime >>> onnxruntime.preload_dlls(directory="") >>> onnxruntime.print_debug_info() ... List of loaded DLLs: C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_adv64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_ops64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_engines_precompiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cufft\bin\cufft64_11.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublasLt64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublas64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_heuristic64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_engines_runtime_compiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_graph64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cuda_runtime\bin\cudart64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\numpy.libs\msvcp140-263139962577ecda4cd9469ca360a746.dll C:\Users\abcd\.conda\envs\py310\msvcp140.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn64_9.dll C:\Users\abcd\.conda\envs\py310\msvcp140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140.dll ... ``` In below example, we import torch before preload_dlls. In this case, ORT skips loading CUDA/cuDNN DLLs, and use the DLLs from torch: ``` >>> import onnxruntime >>> import torch >>> onnxruntime.preload_dlls() Skip loading CUDA and cuDNN DLLs since torch is imported. >>> onnxruntime.print_debug_info() ... List of loaded DLLs: C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\nvrtc64_120_0.alt.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\curand64_10.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cufft64_11.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_heuristic64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_precompiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_adv64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cublasLt64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_ops64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cublas64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_runtime_compiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\nvrtc64_120_0.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\nvrtc-builtins64_126.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_cnn64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_graph64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudart64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\numpy.libs\msvcp140-263139962577ecda4cd9469ca360a746.dll C:\Users\abcd\.conda\envs\py310\msvcp140.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cufftw64_11.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\caffe2_nvrtc.dll C:\Users\abcd\.conda\envs\py310\msvcp140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140.dll ... ``` Last example is to load CUDA and cuDNN separately from different locations. CUDA location is based on CUDA_PATH environment variable, and cuDNN path is a relative path points to cudnn in nvidia site package. ``` >>> import onnxruntime >>> import os >>> os.environ["CUDA_PATH"] 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v12.8' >>> onnxruntime.preload_dlls(cuda=True, cudnn=False, directory=os.path.join(os.environ["CUDA_PATH"], "bin")) >>> onnxruntime.preload_dlls(cuda=False, cudnn=True, directory="..\\nvidia\\cudnn\\bin") >>> onnxruntime.print_debug_info() ... List of loaded DLLs: C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_adv64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_ops64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_engines_precompiled64_9.dll C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\cufft64_11.dll C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\cublasLt64_12.dll C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\cublas64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_heuristic64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_engines_runtime_compiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_graph64_9.dll C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\cudart64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\numpy.libs\msvcp140-263139962577ecda4cd9469ca360a746.dll C:\Users\abcd\.conda\envs\py310\msvcp140.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn64_9.dll C:\Users\abcd\.conda\envs\py310\vcruntime140_1.dll C:\Users\abcd\.conda\envs\py310\msvcp140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140.dll ... ``` ### Motivation and Context To address issues mentioned in description of #23674 that onnxruntime preload might cause conflicts with PyTorch. Before this change, `import torch` after `onnxruntime.preload_dlls` will cause issue: ``` >>> import onnxruntime >>> onnxruntime.preload_dlls(verbose=True) ----List of loaded DLLs---- D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cufft\bin\cufft64_11.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublas64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublasLt64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_graph64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cuda_runtime\bin\cudart64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\numpy.libs\msvcp140-d64049c6e3865410a7dda6a7e9f0c575.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn64_9.dll D:\anaconda3\envs\py310\msvcp140.dll D:\anaconda3\envs\py310\vcruntime140_1.dll D:\anaconda3\envs\py310\msvcp140_1.dll D:\anaconda3\envs\py310\vcruntime140.dll >>> import torch Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\anaconda3\envs\py310\lib\site-packages\torch\__init__.py", line 137, in <module> raise err OSError: [WinError 127] The specified procedure could not be found. Error loading "D:\anaconda3\envs\py310\lib\site-packages\torch\lib\cudnn_adv64_9.dll" or one of its dependencies. ```
@tianleiwu @snnn
|
The file build_and_package_info.py is generated by setup.py: onnxruntime/tools/ci_build/build.py Line 2553 in 0564265
@ranjitshs, How do you build the wheel for AIX? |
@tianleiwu |
### Description Changes: (1) Pass --cuda_version in packaging pipeline to build wheel command line so that cuda_version can be saved. Note that cuda_version is also required for generating extra_require for #23659. (2) Update steup.py and onnxruntime_validation.py to save cuda version to capi/build_and_package_info.py. (3) Add a helper function to preload dependent DLLs (MSVC, CUDA, CUDNN) in `__init__.py`. First we will try to load DLLs from nvidia site packages, then try load remaining DLLs with default path settings. ``` import onnxruntime onnxruntime.preload_dlls() ``` To show loaded DLLs, set `verbose=True`. It is also possible to disable loading some types of DLLs like: ``` onnxruntime.preload_dlls(cuda=False, cudnn=False, msvc=False, verbose=True) ``` #### PyTorch and onnxruntime in Windows When working with pytorch, onnxruntime will reuse the CUDA and cuDNN DLLs loaded by pytorch as long as CUDA and cuDNN major versions are compatible. Preload DLLs actually might cause issues (see example 2 and 3 below) in Windows. Example 1: onnxruntime and torch can work together easily. ``` >>> import torch >>> import onnxruntime >>> session = onnxruntime.InferenceSession("model.onnx", providers=["CUDAExecutionProvider"]) >>> onnxruntime.preload_dlls(cuda=False, cudnn=False, msvc=False, verbose=True) ----List of loaded DLLs---- D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\curand64_10.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cufft64_11.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_heuristic64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_precompiled64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_ops64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_adv64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cublasLt64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cublas64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\nvrtc64_120_0.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\nvrtc-builtins64_124.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_runtime_compiled64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_cnn64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_graph64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\numpy.libs\msvcp140-d64049c6e3865410a7dda6a7e9f0c575.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudart64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn64_9.dll D:\anaconda3\envs\py310\msvcp140.dll D:\anaconda3\envs\py310\msvcp140_1.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cufftw64_11.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\caffe2_nvrtc.dll D:\anaconda3\envs\py310\vcruntime140_1.dll D:\anaconda3\envs\py310\vcruntime140.dll >>> session.get_providers() ['CUDAExecutionProvider', 'CPUExecutionProvider'] ``` Example 2: Use preload_dlls after `import torch` is not necessary. Unfortunately, it seems that multiple DLLs of same filename are loaded. They can be used in parallel but not ideal since more memory is used. ``` >>> import torch >>> import onnxruntime >>> onnxruntime.preload_dlls(verbose=True) ----List of loaded DLLs---- D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cufft\bin\cufft64_11.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublas64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublasLt64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\curand64_10.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cufft64_11.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_heuristic64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_precompiled64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_ops64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_adv64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cublasLt64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cublas64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\nvrtc64_120_0.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\nvrtc-builtins64_124.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_runtime_compiled64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_cnn64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn_graph64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_graph64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cuda_runtime\bin\cudart64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\numpy.libs\msvcp140-d64049c6e3865410a7dda6a7e9f0c575.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudart64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cudnn64_9.dll D:\anaconda3\envs\py310\msvcp140_1.dll D:\anaconda3\envs\py310\msvcp140.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\cufftw64_11.dll D:\anaconda3\envs\py310\Lib\site-packages\torch\lib\caffe2_nvrtc.dll D:\anaconda3\envs\py310\vcruntime140_1.dll D:\anaconda3\envs\py310\vcruntime140.dll ``` Example 3: Use preload_dlls before `import torch` might cause torch import error in Windows. Later we may provide an option to load DLLs from torch directory to avoid this issue. ``` >>> import onnxruntime >>> onnxruntime.preload_dlls(verbose=True) ----List of loaded DLLs---- D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cufft\bin\cufft64_11.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublas64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublasLt64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_graph64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cuda_runtime\bin\cudart64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\numpy.libs\msvcp140-d64049c6e3865410a7dda6a7e9f0c575.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn64_9.dll D:\anaconda3\envs\py310\msvcp140.dll D:\anaconda3\envs\py310\vcruntime140_1.dll D:\anaconda3\envs\py310\msvcp140_1.dll D:\anaconda3\envs\py310\vcruntime140.dll >>> import torch Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\anaconda3\envs\py310\lib\site-packages\torch\__init__.py", line 137, in <module> raise err OSError: [WinError 127] The specified procedure could not be found. Error loading "D:\anaconda3\envs\py310\lib\site-packages\torch\lib\cudnn_adv64_9.dll" or one of its dependencies. ``` #### PyTorch and onnxruntime in Linux In Linux, since pytorch uses nvidia site packages for CUDA and cuDNN DLLs. Preload DLLs consistently loads same set of DLLs, and it could help maintaining. ``` >>> import onnxruntime >>> onnxruntime.preload_dlls(verbose=True) ----List of loaded DLLs---- /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn.so.9 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_graph.so.9 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/curand/lib/libcurand.so.10 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cuda_nvrtc/lib/libnvrtc.so.12 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 >>> import torch >>> torch.rand(3, 3).cuda() tensor([[0.4619, 0.0279, 0.2092], [0.0416, 0.6782, 0.5889], [0.9988, 0.9092, 0.7982]], device='cuda:0') >>> session = onnxruntime.InferenceSession("model.onnx", providers=["CUDAExecutionProvider"]) >>> session.get_providers() ['CUDAExecutionProvider', 'CPUExecutionProvider'] ``` ``` >>> import torch >>> import onnxruntime >>> session = onnxruntime.InferenceSession("model.onnx", providers=["CUDAExecutionProvider"]) >>> onnxruntime.preload_dlls(cuda=False, cudnn=False, msvc=False, verbose=True) ----List of loaded DLLs---- /cuda12.8/targets/x86_64-linux/lib/libnvrtc.so.12.8.61 /cudnn9.7/lib/libcudnn_graph.so.9.7.0 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/curand/lib/libcurand.so.10 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn.so.9 /anaconda3/envs/py310/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12 ``` Without preloading DLLs, onnxruntime will load CUDA and cuDNN DLLs based on `LD_LIBRARY_PATH`. Torch will reuse the same DLLs loaded by onnxruntime: ``` >>> import onnxruntime >>> session = onnxruntime.InferenceSession("model.onnx", providers=["CUDAExecutionProvider"]) >>> onnxruntime.preload_dlls(cuda=False, cudnn=False, msvc=False, verbose=True) ----List of loaded DLLs---- /cuda12.8/targets/x86_64-linux/lib/libnvrtc.so.12.8.61 /cuda12.8/targets/x86_64-linux/lib/libcufft.so.11.3.3.41 /cuda12.8/targets/x86_64-linux/lib/libcurand.so.10.3.9.55 /cuda12.8/targets/x86_64-linux/lib/libcublas.so.12.8.3.14 /cuda12.8/targets/x86_64-linux/lib/libcublasLt.so.12.8.3.14 /cudnn9.7/lib/libcudnn_graph.so.9.7.0 /cudnn9.7/lib/libcudnn.so.9.7.0 /cuda12.8/targets/x86_64-linux/lib/libcudart.so.12.8.57 >>> import torch >>> onnxruntime.preload_dlls(cuda=False, cudnn=False, msvc=False, verbose=True) ----List of loaded DLLs---- /cuda12.8/targets/x86_64-linux/lib/libnvrtc.so.12.8.61 /cuda12.8/targets/x86_64-linux/lib/libcufft.so.11.3.3.41 /cuda12.8/targets/x86_64-linux/lib/libcurand.so.10.3.9.55 /cuda12.8/targets/x86_64-linux/lib/libcublas.so.12.8.3.14 /cuda12.8/targets/x86_64-linux/lib/libcublasLt.so.12.8.3.14 /cudnn9.7/lib/libcudnn_graph.so.9.7.0 /cudnn9.7/lib/libcudnn.so.9.7.0 /cuda12.8/targets/x86_64-linux/lib/libcudart.so.12.8.57 >>> torch.rand(3, 3).cuda() tensor([[0.2233, 0.9194, 0.8078], [0.0906, 0.2884, 0.3655], [0.6249, 0.2904, 0.4568]], device='cuda:0') >>> onnxruntime.preload_dlls(cuda=False, cudnn=False, msvc=False, verbose=True) ----List of loaded DLLs---- /cuda12.8/targets/x86_64-linux/lib/libnvrtc.so.12.8.61 /cuda12.8/targets/x86_64-linux/lib/libcufft.so.11.3.3.41 /cuda12.8/targets/x86_64-linux/lib/libcurand.so.10.3.9.55 /cuda12.8/targets/x86_64-linux/lib/libcublas.so.12.8.3.14 /cuda12.8/targets/x86_64-linux/lib/libcublasLt.so.12.8.3.14 /cudnn9.7/lib/libcudnn_graph.so.9.7.0 /cudnn9.7/lib/libcudnn.so.9.7.0 /cuda12.8/targets/x86_64-linux/lib/libcudart.so.12.8.57 ``` ### Motivation and Context In many reported issues of import onnxruntime failure, the root cause is dependent DLLs missing or not in path. This change will make it easier to resolve those issues. This is based on Jian's PR #22506 with extra change to load msvc dlls. #23659 can be used to install CUDA/cuDNN dlls to site packages. Example command line after next official release 1.21: ``` pip install onnxruntime-gpu[cuda,cudnn] ``` If user installed pytorch in Linux, those DLLs are usually installed together with torch.
### Description Update preload_dlls: (1) Add a parameter `directory` to specify the DLL location. (2) In Windows, skip loading CUDA/cuDNN dlls when torch for cuda 12.x has been imported. (3) In Windows, default search order for CUDA/cuDNN dlls: lib directory of torch for cuda 12.x in Windows; nvidia site packages; default DLL loading paths. User can use the directory parameter to change search order. Use empty string will change search order to `nvidia site packages; default DLL loading paths`. Use a path if user wants to load DLLs from a specific location. (4) Do not load cudnn sub DLLs in Linux. The benefit of such change is that ORT could work seamlessly with PyTorch in both Linux and Windows. We also provide option for advanced users to load CUDA/cuDNN from a location specified by them. ### Examples in Windows By default, preload_dlls will load CUDA and cuDNN DLLs from PyTorch if it is compatible: ``` >>> import onnxruntime >>> onnxruntime.preload_dlls() >>> onnxruntime.print_debug_info() onnxruntime-gpu version: 1.21.0 CUDA version used in build: 12.6 platform: Windows-10-10.0.22631-SP0 Python package, version and location: onnxruntime==1.20.1 at c:\users\abcd\.conda\envs\py310\lib\site-packages\onnxruntime onnxruntime-gpu==1.21.0 at c:\users\abcd\.conda\envs\py310\lib\site-packages\onnxruntime WARNING: multiple onnxruntime packages are installed to the same location. Please 'pip uninstall` all above packages, then `pip install` only one of them. torch==2.6.0+cu126 at c:\users\abcd\.conda\envs\py310\lib\site-packages\torch nvidia-cuda-runtime-cu12==12.8.57 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-cudnn-cu12==9.7.1.26 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-cublas-cu12==12.8.3.14 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-cufft-cu12==11.3.3.41 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-curand-cu12==10.3.7.77 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-cuda-nvrtc-cu12==12.6.85 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia nvidia-nvjitlink-cu12==12.8.61 at c:\users\abcd\.conda\envs\py310\lib\site-packages\nvidia Environment variable: PATH=c:\users\abcd\.conda\envs\py310;c:\users\abcd\.conda\envs\py310\Library\usr\bin;c:\users\abcd\.conda\envs\py310\Library\bin;c:\users\abcd\.conda\envs\py310\Scripts;c:\users\abcd\.conda\envs\py310\bin;C:\ProgramData\anaconda3\condabin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\libnvvp;C:\windows\system32; List of loaded DLLs: c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_adv64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_precompiled64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cufft64_11.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cublasLt64_12.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_ops64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cublas64_12.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_heuristic64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_runtime_compiled64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_graph64_9.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\numpy.libs\msvcp140-263139962577ecda4cd9469ca360a746.dll c:\users\abcd\.conda\envs\py310\msvcp140.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudart64_12.dll c:\users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn64_9.dll c:\users\abcd\.conda\envs\py310\vcruntime140_1.dll c:\users\abcd\.conda\envs\py310\msvcp140_1.dll c:\users\abcd\.conda\envs\py310\vcruntime140.dll Device information: { "gpu": { "driver_version": "571.96", "devices": [ { "memory_total": 8589934592, "memory_available": 6032777216, "name": "NVIDIA GeForce GTX 1080" } ] }, "cpu": { "brand": "Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz", "cores": 10, "logical_cores": 20, "hz": "3696000000,0", "l2_cache": 10485760, "flags": "3dnow,3dnowprefetch,abm,acpi,adx,aes,apic,avx,avx2,avx512bw,avx512cd,avx512dq,avx512f,avx512vl,avx512vnni,bmi1,bmi2,clflush,clflushopt,clwb,cmov,cx16,cx8,de,dtes64,dts,erms,est,f16c,fma,fpu,fxsr,ht,hypervisor,ia64,invpcid,lahf_lm,mca,mce,mmx,monitor,movbe,mpx,msr,mtrr,osxsave,pae,pat,pbe,pcid,pclmulqdq,pdcm,pge,pni,popcnt,pqe,pqm,pse,pse36,rdrnd,rdseed,sep,serial,smap,smep,ss,sse,sse2,sse4_1,sse4_2,ssse3,tm,tm2,tsc,tscdeadline,vme,x2apic,xsave,xtpr", "processor": "Intel64 Family 6 Model 85 Stepping 7, GenuineIntel" }, "memory": { "total": 68414291968, "available": 40240791552 } } >>> import torch ``` In below example, we set `directory=""`, which prefers nvidia site package like the following: ``` >>> import onnxruntime >>> onnxruntime.preload_dlls(directory="") >>> onnxruntime.print_debug_info() ... List of loaded DLLs: C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_adv64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_ops64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_engines_precompiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cufft\bin\cufft64_11.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublasLt64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublas64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_heuristic64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_engines_runtime_compiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_graph64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cuda_runtime\bin\cudart64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\numpy.libs\msvcp140-263139962577ecda4cd9469ca360a746.dll C:\Users\abcd\.conda\envs\py310\msvcp140.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn64_9.dll C:\Users\abcd\.conda\envs\py310\msvcp140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140.dll ... ``` In below example, we import torch before preload_dlls. In this case, ORT skips loading CUDA/cuDNN DLLs, and use the DLLs from torch: ``` >>> import onnxruntime >>> import torch >>> onnxruntime.preload_dlls() Skip loading CUDA and cuDNN DLLs since torch is imported. >>> onnxruntime.print_debug_info() ... List of loaded DLLs: C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\nvrtc64_120_0.alt.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\curand64_10.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cufft64_11.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_heuristic64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_precompiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_adv64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cublasLt64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_ops64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cublas64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_engines_runtime_compiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\nvrtc64_120_0.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\nvrtc-builtins64_126.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_cnn64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn_graph64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudart64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\numpy.libs\msvcp140-263139962577ecda4cd9469ca360a746.dll C:\Users\abcd\.conda\envs\py310\msvcp140.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cudnn64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\cufftw64_11.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\torch\lib\caffe2_nvrtc.dll C:\Users\abcd\.conda\envs\py310\msvcp140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140.dll ... ``` Last example is to load CUDA and cuDNN separately from different locations. CUDA location is based on CUDA_PATH environment variable, and cuDNN path is a relative path points to cudnn in nvidia site package. ``` >>> import onnxruntime >>> import os >>> os.environ["CUDA_PATH"] 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v12.8' >>> onnxruntime.preload_dlls(cuda=True, cudnn=False, directory=os.path.join(os.environ["CUDA_PATH"], "bin")) >>> onnxruntime.preload_dlls(cuda=False, cudnn=True, directory="..\\nvidia\\cudnn\\bin") >>> onnxruntime.print_debug_info() ... List of loaded DLLs: C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_adv64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_ops64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_engines_precompiled64_9.dll C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\cufft64_11.dll C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\cublasLt64_12.dll C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\cublas64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_heuristic64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_engines_runtime_compiled64_9.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_graph64_9.dll C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\cudart64_12.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\numpy.libs\msvcp140-263139962577ecda4cd9469ca360a746.dll C:\Users\abcd\.conda\envs\py310\msvcp140.dll C:\Users\abcd\.conda\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn64_9.dll C:\Users\abcd\.conda\envs\py310\vcruntime140_1.dll C:\Users\abcd\.conda\envs\py310\msvcp140_1.dll C:\Users\abcd\.conda\envs\py310\vcruntime140.dll ... ``` ### Motivation and Context To address issues mentioned in description of #23674 that onnxruntime preload might cause conflicts with PyTorch. Before this change, `import torch` after `onnxruntime.preload_dlls` will cause issue: ``` >>> import onnxruntime >>> onnxruntime.preload_dlls(verbose=True) ----List of loaded DLLs---- D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cufft\bin\cufft64_11.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublas64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cublas\bin\cublasLt64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn_graph64_9.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cuda_runtime\bin\cudart64_12.dll D:\anaconda3\envs\py310\Lib\site-packages\numpy.libs\msvcp140-d64049c6e3865410a7dda6a7e9f0c575.dll D:\anaconda3\envs\py310\Lib\site-packages\nvidia\cudnn\bin\cudnn64_9.dll D:\anaconda3\envs\py310\msvcp140.dll D:\anaconda3\envs\py310\vcruntime140_1.dll D:\anaconda3\envs\py310\msvcp140_1.dll D:\anaconda3\envs\py310\vcruntime140.dll >>> import torch Traceback (most recent call last): File "<stdin>", line 1, in <module> File "D:\anaconda3\envs\py310\lib\site-packages\torch\__init__.py", line 137, in <module> raise err OSError: [WinError 127] The specified procedure could not be found. Error loading "D:\anaconda3\envs\py310\lib\site-packages\torch\lib\cudnn_adv64_9.dll" or one of its dependencies. ```
Description
Changes:
(1) Pass --cuda_version in packaging pipeline to build wheel command line so that cuda_version can be saved. Note that cuda_version is also required for generating extra_require for #23659.
(2) Update steup.py and onnxruntime_validation.py to save cuda version to capi/build_and_package_info.py.
(3) Add a helper function to preload dependent DLLs (MSVC, CUDA, CUDNN) in
__init__.py
. First we will try to load DLLs from nvidia site packages, then try load remaining DLLs with default path settings.To show loaded DLLs, set
verbose=True
. It is also possible to disable loading some types of DLLs like:PyTorch and onnxruntime in Windows
When working with pytorch, onnxruntime will reuse the CUDA and cuDNN DLLs loaded by pytorch as long as CUDA and cuDNN major versions are compatible. Preload DLLs actually might cause issues (see example 2 and 3 below) in Windows.
Example 1: onnxruntime and torch can work together easily.
Example 2: Use preload_dlls after
import torch
is not necessary. Unfortunately, it seems that multiple DLLs of same filename are loaded. They can be used in parallel but not ideal since more memory is used.Example 3: Use preload_dlls before
import torch
might cause torch import error in Windows. Later we may provide an option to load DLLs from torch directory to avoid this issue.PyTorch and onnxruntime in Linux
In Linux, since pytorch uses nvidia site packages for CUDA and cuDNN DLLs. Preload DLLs consistently loads same set of DLLs, and it could help maintaining.
Without preloading DLLs, onnxruntime will load CUDA and cuDNN DLLs based on
LD_LIBRARY_PATH
. Torch will reuse the same DLLs loaded by onnxruntime:Motivation and Context
In many reported issues of import onnxruntime failure, the root cause is dependent DLLs missing or not in path. This change will make it easier to resolve those issues.
This is based on Jian's PR #22506 with extra change to load msvc dlls.
#23659 can be used to install CUDA/cuDNN dlls to site packages. Example command line after next official release 1.21:
If user installed pytorch in Linux, those DLLs are usually installed together with torch.