Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add fusions for SigLIP and Conformer-Encoder #23528

Merged
merged 21 commits into from
Jan 31, 2025

Conversation

kunal-vaishnavi
Copy link
Contributor

@kunal-vaishnavi kunal-vaishnavi commented Jan 29, 2025

Description

This PR adds fusions for Google's SigLIP model and Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the SigLIP model.

$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference

Here is an example of how to run the ORT transformer optimizer for the conformer-encoder model.

$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute

Motivation and Context

This PR helps optimize multi-modal models that use SigLIP for the vision encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:

Introduction of ONNX Script

This PR introduces ONNX Script into the ORT transformer optimizer as an optional step via the fold_transpose_initializers() method of the DynamoOnnxHelper class.

@kunal-vaishnavi kunal-vaishnavi merged commit cb69c59 into microsoft:main Jan 31, 2025
96 checks passed
sfatimar pushed a commit to intel/onnxruntime that referenced this pull request Feb 5, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
sfatimar pushed a commit to intel/onnxruntime that referenced this pull request Feb 5, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
ashrit-ms pushed a commit that referenced this pull request Feb 11, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
ashrit-ms added a commit that referenced this pull request Feb 11, 2025
### Description
This PR is to update the win-ort-main branch to the tip main branch as
of 2025-02-11.

### PR List
74c778e [WebNN EP] Automatically move input CPU tensors to ml-tensor
(#23073)
3775057 use correct total length to fix static kv_cache performance
(#23615)
3901e96 remove --use_vcpkg flag for Python-CUDA-Packaging-Pipeline
(#23631)
c610df5 Add python_requires to package metadata (#23604)
2d27d68 [QNN EP] Add QNN EP to ARM64X build targets (#23635)
e666503 [webgpu] no longer need pass-in gpu adapter for custom
context (#23593)
af679a0 Fix logic for selecting alternate name for blob (#23617)
e206950 [ARM CPU] Add fp16 mlas kernels for exp, tanh, softmax,
logsoftmax, softcap (#23597)
9ba5619 Update pybind and json to the latest (#23589)
c54736c Migrate iOS release pipeline to 1 ES (#23606)
3981326 Increase timeout for Windows TensorRT CI (#23625)
0274b7b fix on trtCudaVersion (#23616)
740e9ab update run CI script (#23621)
5ef1832 [WebGPU] Support PIX Capture for WebGPU EP (#23192)
0114551 Fix for C4267 warning (#23610)
002916a Validate the context_file_path before EP compile graphs
(#23611)
0887e36 [webgpu] Use pushErrorScope()/popErrorScope() once for an
inference run (#23438)
65008cb Auto-generated baselines by 1ES Pipeline Templates (#23603)
09e5724 [CUDA] Fix beam search of num_beams > 32 (#23599)
82840f6 Implement Flash Attention 2 for webgpu EP (#23576)
a6ea57b OpenVINO EP Weights Sharing Feature (#23553)
2c2ff4a [CUDA] Fix BeamSearchTest.DummyT5WithSequenceInputIds test
failure in Windows (#23596)
d981b15 [webgpu/js] Optimize resize webgpu op & fix precision issues
(#23591)
328a13c Enable VCPKG in more pipelines (#23590)
6728d60 [TensorRT EP] support TensorRT 10.8-GA (#23592)
d1fb58b Quantization tool: Allow user to override calibrator's
session EP (#23559)
649ced4 Enable user loading model with external data from memory
buffer (#23557)
544bdd6 Fix ConvTranspose for certain attribute combinations (#23488)
8f6ddf3 Delete extra cgmanifest entries and files (#23583)
5f6a315 Enable VCPKG in CI build (#23426)
e1e3f62 Bump lintrunner from 0.12.5 to 0.12.7 (#23326)
cd8775f Fix Node JS Samples (#23581)
6b4f9c4 [WebGPU EP] Batch Norm Implementation (#23525)
1fce51b Fix all instances of 4244 and 4267 warnings in OV EP code
(#23567)
c29ca1c Update QNN default version to 2.31 (#23573)
2fc75a4 [mobile] Add Android BrowserStack test project back (#23551)
9e18b6a [CUDA] Update nvcc flags (#23572)
b47e1e6 [QNN EP] Make offloading graph input/output quantization (to
CPU) the default (#23368)
75a9b40 [ROCm] Update CI to use rocm 6.3.2 (#23577)
26ff2b6 Bump ruff from 0.9.3 to 0.9.4 (#23563)
b2560a7 Update react-native to 0.72 (#23509)
faee912 [js] update JavaScript API to support QNN EP options (#23486)
816e8cb [EP Perf] Update env to ubuntu 22.04 (#23570)
cddc271 Use Eigen in Round implementation (#23571)
e8b0bdb Shape inference: ReduceMean dispatcher, quant_pre_process:
skip_symbolic_shape bugfix (#23558)
267b493 delete the supported domain version upper bounds (#23237)
bb7f961 remove log spam from cpuinfo (#23548)
169917b Use latest vcpkg commit in configuration, sync manifest with
deps.txt (#23554)
a9d4d08 Add of ReduceMax Gradient (#23501)
6bbf1bd [js/web] upgrade version of flatbuffers (#23545)
271c509 DP4AMatMul perf refinements (#23539)
cb69c59 Add fusions for SigLIP and Conformer-Encoder (#23528)
61fae9b Remove "--enable_pybind" from webgpu pipeline (#23550)
0bb4ea6 Update BiasGelu fusion and related ops (#23518)
4dde74a Add more details to BrowserStack script failure (#23520)
ead9d5c Set ANDROID_USE_LEGACY_TOOLCHAIN_FILE to false (#23544)
7e24088 Enable dlpack by default (#23110)
dc2f7a9 Add overload of `TryParseStringWithClassicLocale()` that uses
`std::from_chars()` (#23541)
5407c69 Fix the issue that the new generated EP context model not
able to find external data (#23537)
fbae88f [js/web] use the recommended workaround for Vite (#23531)
d5338da Fix tensor external data info length parsing issue. (#23526)
e3e4173 [ROCm EP] Fix transpose helper for gfx gridsize constraints
(#23527)
80bc1d2 Enable Ep context with external data for CPU nodes (#23498)
bf023ab [js/web] allow import .mjs/.wasm file (#23487)
655a23f [onnxruntime/build] Add new flag enable_generic_interface to
build primary EPs by default (#23342)
a770a8d Update RN to 0.71.19 (#23381)
1cf0ebd Delete Prefast workflow until the build failure is fixed
(#23510)
d2c5e24 Add of GlobalMaxPool Gradient (#23502)
ded8730 Remove thrust::unary_function (#23506)
8db97a6 [webgpu] Bump version of Dawn to b9b4a370 (#23494)
fdde2e2 Fix for gcc 13.3.1: Avoid creating a copy (#23500)
96ec1dd Bump ruff from 0.9.2 to 0.9.3 (#23496)
42f0c00 Adds the new System.Numerics.Tensors as an input/output type
when using dotnet 8.0 and up. (#23261)
97c2bbe Fix shape infer of onnx GroupNorm (#23477)
1fc9c48 Enable coremltools for Linux build (#23481)
13348c5 [ARM CPU] hgemm optimized for gqa (#23107)
c89a798 Enable opti on Microsoft.ML.OnnxRuntime with RelWithDebInfo
config (#23463)
d00ae32 Revert "[Mobile] Add BrowserStack Android MAUI Test (#23383)"
(#23474)
8b1d3b3 Align AvgPool ceil_mode on last value to torch (#16752)
06fc73b [TRT EP Perf Tool] Add annotations import to python script to
support annotations on Python 3.8 (#23466)

### Motivation and Context
This update includes the change to add QNN EP to ARM64X build targets.

---------

Signed-off-by: dependabot[bot] <[email protected]>
Co-authored-by: Adrian Lizarraga <[email protected]>
Co-authored-by: Ti-Tai Wang <[email protected]>
Co-authored-by: Caroline Zhu <[email protected]>
Co-authored-by: Grégoire <[email protected]>
Co-authored-by: Jing Fang <[email protected]>
Co-authored-by: Changming Sun <[email protected]>
Co-authored-by: Yateng Hong <[email protected]>
Co-authored-by: Michael Sharp <[email protected]>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Malik Shahzad Muzaffar <[email protected]>
Co-authored-by: Yulong Wang <[email protected]>
Co-authored-by: Dmitri Smirnov <[email protected]>
Co-authored-by: Corentin Maravat <[email protected]>
Co-authored-by: Jian Chen <[email protected]>
Co-authored-by: Karim Vadsariya <[email protected]>
Co-authored-by: Lei Cao <[email protected]>
Co-authored-by: Karim Vadsariya <[email protected]>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Hector Li <[email protected]>
Co-authored-by: Ted Themistokleous <[email protected]>
Co-authored-by: Ted Themistokleous <[email protected]>
Co-authored-by: Edward Chen <[email protected]>
Co-authored-by: Takeshi Watanabe <[email protected]>
Co-authored-by: Xavier Dupré <[email protected]>
Co-authored-by: Justin Chu <[email protected]>
Co-authored-by: Tianlei Wu <[email protected]>
Co-authored-by: kunal-vaishnavi <[email protected]>
Co-authored-by: Sushanth Rajasankar <[email protected]>
Co-authored-by: PARK DongHa <[email protected]>
Co-authored-by: George Wu <[email protected]>
Co-authored-by: Xinpeng Dou <[email protected]>
Co-authored-by: Jambay Kinley <[email protected]>
Co-authored-by: Yifan Li <[email protected]>
Co-authored-by: Gavin Kinsey <[email protected]>
Co-authored-by: Prathik Rao <[email protected]>
Co-authored-by: Jon Campbell <[email protected]>
Co-authored-by: Satya Kumar Jandhyala <[email protected]>
Co-authored-by: Joshua Lochner <[email protected]>
Co-authored-by: Ankit Maheshkar <[email protected]>
Co-authored-by: jatinwadhwa921 <[email protected]>
Co-authored-by: jatinwadhwa921 <[email protected]>
Co-authored-by: saurabh <[email protected]>
Co-authored-by: TejalKhade28 <[email protected]>
Co-authored-by: sfatimar <[email protected]>
Co-authored-by: Javier E. Martinez <[email protected]>
Co-authored-by: Preetha Veeramalai <[email protected]>
Co-authored-by: Eric Crawford <[email protected]>
Co-authored-by: microsoft-github-policy-service[bot] <77245923+microsoft-github-policy-service[bot]@users.noreply.github.com>
Co-authored-by: Jie Chen <[email protected]>
Co-authored-by: shaoboyan091 <[email protected]>
Co-authored-by: David Hotham <[email protected]>
Co-authored-by: Guenther Schmuelling <[email protected]>
Co-authored-by: Enrico Galli <[email protected]>
kunal-vaishnavi added a commit that referenced this pull request Feb 16, 2025
### Description
This PR updates the attention fusion for conformer-encoder models. It is
a follow-up to [this
PR](#23528).

### Motivation and Context
Subsequent modeling code updates have changed (and will continue to
change) the graph fusions. However, the three ending attention mask
nodes (`Cast --> Unsqueeze --> Equal`) will remain. Thus, the attention
fusion should work regardless of any future modeling code changes when
handling the attention mask.
guschmue pushed a commit that referenced this pull request Mar 6, 2025
### Description
This PR adds fusions for [Google's SigLIP
model](https://huggingface.co/google/siglip-base-patch16-224/) and
Microsoft's internal conformer-encoder model.

Here is an example of how to run the ORT transformer optimizer for the
SigLIP model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference
```

Here is an example of how to run the ORT transformer optimizer for the
conformer-encoder model.
```
$ git clone https://github.com/microsoft/onnxruntime
$ cd onnxruntime/onnxruntime/python/tools/transformers
$ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute
```

### Motivation and Context
This PR helps optimize multi-modal models that use SigLIP for the vision
encoder and conformer-encoder for the speech encoder.

This PR uses changes from the following PRs:
- pytorch/pytorch#144801
- microsoft/onnxscript#2018
- microsoft/onnxscript#2019
- microsoft/onnxscript#2020
- microsoft/onnxscript#2021
- microsoft/onnxscript#2022
- microsoft/onnxscript#2024
- microsoft/onnxscript#2025
- microsoft/onnxscript#2029
- microsoft/onnxscript#2033

### Introduction of ONNX Script

This PR introduces [ONNX
Script](https://github.com/microsoft/onnxscript) into the ORT
transformer optimizer as an optional step via the
`fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
guschmue pushed a commit that referenced this pull request Mar 6, 2025
### Description
This PR updates the attention fusion for conformer-encoder models. It is
a follow-up to [this
PR](#23528).

### Motivation and Context
Subsequent modeling code updates have changed (and will continue to
change) the graph fusions. However, the three ending attention mask
nodes (`Cast --> Unsqueeze --> Equal`) will remain. Thus, the attention
fusion should work regardless of any future modeling code changes when
handling the attention mask.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants