Skip to content

[MLIR] [Vector] Linearization patterns for vector.load and vector.store #145115

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 69 additions & 2 deletions mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -623,6 +623,73 @@ struct LinearizeVectorCreateMask final
}
};

/// This pattern linearizes vector.load from vector<1xN> to vector<N>.
/// It currently supports only lineariztion of <1XN> to <N>
/// Following,
/// vector.load %arg0[%c0, %c0] : memref<1x4xf32>, vector<1x4xf32>
/// is converted to:
/// vector.load %arg0[%c0, %c0] : memref<1x4xf32>, vector<4xf32>
/// vector.shape_cast %load_result : vector<4xf32> to vector<1x4xf32>
struct LinearizeVectorLoad final : public OpConversionPattern<vector::LoadOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorLoad(const TypeConverter &typeConverter, MLIRContext *context,
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit) {}

LogicalResult
matchAndRewrite(vector::LoadOp loadOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType vecTy = loadOp.getType();
if (!vecTy || vecTy.getRank() != 2 || vecTy.getShape()[0] != 1)
return rewriter.notifyMatchFailure(loadOp, "only vector<1xN> supported");
auto linearTy = VectorType::get(vecTy.getShape()[1], vecTy.getElementType(),
vecTy.isScalable());
auto newLoad = rewriter.create<vector::LoadOp>(
loadOp.getLoc(), linearTy, adaptor.getBase(), adaptor.getIndices());
auto shapeCast = rewriter.create<vector::ShapeCastOp>(
loadOp.getLoc(), vecTy, newLoad.getResult());
rewriter.replaceOp(loadOp, shapeCast.getResult());
return success();
}
};

/// This pattern linearizes vector.store from vector<1xN> to vector<N>.
/// It currently supports only lineariztion of <1XN> to <N>
/// Following,
/// vector.store %arg0, %arg1[%c0, %c0]
/// : vector<1x4xf32>, memref<1x4xf32>
/// is converted to:
/// vector.shape_cast %arg0 : vector<1x4xf32> to vector<4xf32>
/// vector.store %arg0, %arg1[%c0, %%c0]
/// : vector<4xf32>, memref<1x4xf32>
struct LinearizeVectorStore final
: public OpConversionPattern<vector::StoreOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorStore(const TypeConverter &typeConverter, MLIRContext *context,
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit) {}

LogicalResult
matchAndRewrite(vector::StoreOp storeOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType vecTy = storeOp.getValueToStore().getType();
if (!vecTy || vecTy.getRank() != 2 || vecTy.getShape()[0] != 1)
return rewriter.notifyMatchFailure(storeOp, "only vector<1xN> supported");
auto linearTy = VectorType::get(vecTy.getShape()[1], vecTy.getElementType(),
vecTy.isScalable());

Value valueToStore = adaptor.getValueToStore();
if (valueToStore.getType() != linearTy) {
valueToStore = rewriter.create<vector::ShapeCastOp>(
storeOp.getLoc(), linearTy, valueToStore);
}

rewriter.replaceOpWithNewOp<vector::StoreOp>(
storeOp, valueToStore, adaptor.getBase(), adaptor.getIndices());
return success();
}
};

} // namespace

/// This method defines the set of operations that are linearizable, and hence
Expand Down Expand Up @@ -714,8 +781,8 @@ void mlir::vector::populateVectorLinearizeBasePatterns(
RewritePatternSet &patterns) {
patterns
.add<LinearizeConstantLike, LinearizeVectorizable, LinearizeVectorBitCast,
LinearizeVectorSplat, LinearizeVectorCreateMask>(
typeConverter, patterns.getContext());
LinearizeVectorSplat, LinearizeVectorCreateMask, LinearizeVectorLoad,
LinearizeVectorStore>(typeConverter, patterns.getContext());
}

void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns(
Expand Down
23 changes: 23 additions & 0 deletions mlir/test/Dialect/Vector/linearize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -464,3 +464,26 @@ func.func @linearize_scalable_create_mask(%arg0 : index, %arg1 : index) -> vecto
%0 = vector.create_mask %arg0, %arg1 : vector<1x[16]xi1>
return %0 : vector<1x[16]xi1>
}

// CHECK-LABEL: linearize_vector_load
// CHECK-SAME: (%[[ARG0:.*]]: memref<1x4xf32>) -> vector<1x4xf32>
func.func @linearize_vector_load(%arg0: memref<1x4xf32>) -> vector<1x4xf32> {
// CHECK: %[[CST0:.*]] = arith.constant 0 : index
// CHECK: %[[LOAD:.*]] = vector.load %[[ARG0]][%[[CST0]], %[[CST0]]] : memref<1x4xf32>, vector<4xf32>
// CHECK: %[[CAST:.*]] = vector.shape_cast %[[LOAD]] : vector<4xf32> to vector<1x4xf32>
// CHECK: return %[[CAST]] : vector<1x4xf32>
%c0 = arith.constant 0 : index
%0 = vector.load %arg0[%c0, %c0] : memref<1x4xf32>, vector<1x4xf32>
return %0 : vector<1x4xf32>
}

// CHECK-LABEL: linearize_vector_store
// CHECK-SAME: (%[[ARG0:.*]]: memref<1x4xf32>, %[[ARG1:.*]]: vector<1x4xf32>)
func.func @linearize_vector_store(%arg0: memref<1x4xf32>, %arg1: vector<1x4xf32>) {
// CHECK: %[[CAST:.*]] = vector.shape_cast %arg1 : vector<1x4xf32> to vector<4xf32>
// CHECK: %[[CST0:.*]] = arith.constant 0 : index
// CHECK: vector.store %[[CAST]], %[[ARG0]][%[[CST0]], %[[CST0]]] : memref<1x4xf32>, vector<4xf32>
%c0 = arith.constant 0 : index
vector.store %arg1, %arg0[%c0, %c0] : memref<1x4xf32>, vector<1x4xf32>
return
}
Loading