Skip to content

course homepage for Introduction to Machine Learning

Notifications You must be signed in to change notification settings

kpc-simone/cs480-f24

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

99 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Course Homepage for CS 480/680

Fall 2024, University of Waterloo.

💡 Lectures

Lecture slides and video lectures (recorded offline) will be linked here. Please note that the topics and schedule for all future lectures are tentative.

The suggested readings make use of the following abbreviations to refer to textbook sources:

UML: Understanding Machine Leaning: From Theory to Algorithms. Shai Shalev-Schwartz and Shai Ben-David.

ESL: Elements of Statistical Learning. Trevor Hastie, Robert Tibshirani, and Jerome Friedman.

ISL: Introduction to Statistical Learning. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.

PML: Probabilistic Machine Learning. Kevin P. Murphy

PRML: Pattern Recognition and Machine Learning. Christopher M. Bishop

PML2: Probabilistic Machine Learning: Advanced Topics Kevin P. Murphy

LECTURE DATE TITLE MATERIALS SUPPLEMENTARY READINGS
0 05/09/2024 Logistics & Introduction Slides
Video Lecture
N/A
1 10/09/2024 Halfspaces & The Perceptron Algorithm Slides
Video Lecture
Perceptron Video
UML Section 9.1
ESL Section 4.5
Yaoliang Yu's Lecture Notes
Varun Kanade's Lecture Notes
2 12/09/2024 Linear Regression & Loss Function Design Slides
Video Lecture
UML Section 9.2, 11.2
ESL Section 3.2, 3.4, 7.10
ISL Sections 3.1-3.2, 5.1, 6.2
Gautam Kamath's video on Rewriting Loss Functions
3 17/09/2024 Maximum Likelihood Estimation & Information Slides
Video Lecture
UML Section 24.1
4 19/09/2024 Non-Parametric Methods: KDE, k-NN, and K-Means Slides
Video Lecture
UML Section 19, 22.2
ESL Section 2.3.2, 6.6.1, 13.3, 14.3
ISL 2.2, 12.4.1
5 24/09/2024 Logistic Regression and Numerical Optimization Slides
Video Lecture
UML Section 9.3
ESL Section 4.4
ISL 4.3
PML 10-10.2.3
PRML 4.3.2
6 26/09/2024 Maximum Margin Classifier and Constrained Optimization Slides
Video Lecture
UML Section 15.1
ESL Section 4.5.2
ISL Section 9.1
PML Section 8.5, Section 17.3-17.3.2
PRML Section 7.1 (not including 7.1.1)
7 01/10/2024 Soft Margin Classifier Slides
Video Lecture
UML Section 15.2,15.5
ESL Section 12.1-12.3.2
ISL Section 9.2-9.3
PML Section 17.3.3-17.3.4
PRML Section 7.1.1
8 03/10/2024 Kernel Methods Slides
Video Lecture
PRML Section 6.1-6.3, 3-3.1.0
UML Section 16
ESL Section 5.8
PML Section 17.1
ISL Section 7-7.3
9a 08/10/2024 Bayesian Inference Slides
Video Lecture
PRML Section 3.1,3.3
9b 10/10/2024 Gaussian Processes Slides
Video Lecture
Sampling Animation
PRML Section 6.4
PML Section 17.2
10 10/10/2024 Decision Trees Slides
Video Lecture
ESL Section 9.2
ISL Section 8.1
UML Section 10
11 10/22/2024 Ensemble Methods Slides
Video Lecture
PRML Section 3.2, 14
PML Section 18
ESL Section 7.1-7.3, 8.2, 8.7, 10.2, 10.10
ISL Section 8.1-8.2
12 10/24/2024 Expectation Maximization & Gaussian Mixture Models Slides
Video Lecture
PML Section 8.7
ESL Section 8.5
PRML Section 9.1-9.5
UML Section 24.4
13 10/31/2024 Multi-Layer Perceptrons and Deep Learning Slides
Video Lecture
D2L Section 5
DL Section 6,7
ISL Section 10-10.2, 10.6
14 05/11/2024 Convolutional Neural Networks Slides
Video Lecture
D2L Section 7
DL Section 9
ISL Section 10.3
Fukushima, 1980
15 07/11/2024 Recurrent Neural Networks Slides
Video Lecture
D2L Sections 9, 10
DL Section 10
ISL Section 10.5
Voelker et al., 2019
Andrej Karpathy's "The Unreasonable Effectiveness of RNNs"
16 12/11/2024 Attention Mechanisms Slides
Video Lecture
D2L Section 11
PML Section 15.4-15.7
Bahdanau et al., 2015
Vaswani et al., 2018
Radford et al., 2018
Radford et al.s, 2019
Lilian Weng's "The Transformer Family"
17 14/11/2024 Advanced Optimization Slides
Demo
Video Lecture
DL Section 8
D2L Section 12
18 19/11/2024 Variational Autoencoders and Normalizing Flows Slides
Video Lecture
DL Section 14, 20.10.3
PML Section 19.3.6, 20.3
PML2 Section 20, 21, 23
19 21/11/2024 Generative Adversarial Networks and Diffusion Models Slides
Video Lecture
D2L Section 20
DL Section 20.10.4
PML2 Section 25, 26
Goodfellow et al., 2014
Ho et al., 2020
20 26/11/2024 Robustness
(Guest Lecture from Dr. P Michael Furlong)
Slides
Video Lecture
Goodfellow et al., 2014
Wiyatno, 2019
OpenAI, 2021
21 28/11/2024 Differential Privacy
(Guest Lecture from Saber Malekmohammadi)
Slides
Video Lecture
22 03/12/2024 Fairness
(Guest Lecture from Dr. Terrence C. Stewart)
Slides
Video Lecture

🔍 Assignments

The four assignments will be posted here.

ASSIGNMENT MATERIALS Posted Due Date
1 Assignment 1 11 September 2024 27 September 2024
2 Assignment 2 30 September 2024 18 October 2024
21 October 2024
3 Assignment 3 23 October 2024 8 November 2024
4 Assignment 4 11 November 2024 29 November 2024

About

course homepage for Introduction to Machine Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published