Skip to content

Commit

Permalink
EIP7594: Do universal verification in verify_cell_kzg_proof_batch() (#…
Browse files Browse the repository at this point in the history
…3812)

* restructure verify_cell_kzg_proof_batch a bit

* first draft of universal verification equation

* add one more empty line to make linter happy

* make linter happy

* more testcases for verify_cell_kzg_proof_batch

* verify_cell_kzg_proof_batch: derive coefficient via hash

* rename verify_cell_kzg_proof_batch_challenge -> compute_verify_cell_kzg_proof_batch_challenge

* verify_cell_kzg_proof_batch: editorial + some refactoring

* Improve documentation and variable naming.

* remove k_i from code and doc

---------

Co-authored-by: Justin Traglia <[email protected]>
  • Loading branch information
b-wagn and jtraglia authored Jun 28, 2024
1 parent a3a6c91 commit 83da380
Show file tree
Hide file tree
Showing 2 changed files with 279 additions and 30 deletions.
219 changes: 189 additions & 30 deletions specs/_features/eip7594/polynomial-commitments-sampling.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
- [`_fft_field`](#_fft_field)
- [`fft_field`](#fft_field)
- [`coset_fft_field`](#coset_fft_field)
- [`compute_verify_cell_kzg_proof_batch_challenge`](#compute_verify_cell_kzg_proof_batch_challenge)
- [Polynomials in coefficient form](#polynomials-in-coefficient-form)
- [`polynomial_eval_to_coeff`](#polynomial_eval_to_coeff)
- [`add_polynomialcoeff`](#add_polynomialcoeff)
Expand All @@ -34,7 +35,9 @@
- [KZG multiproofs](#kzg-multiproofs)
- [`compute_kzg_proof_multi_impl`](#compute_kzg_proof_multi_impl)
- [`verify_kzg_proof_multi_impl`](#verify_kzg_proof_multi_impl)
- [`verify_cell_kzg_proof_batch_impl`](#verify_cell_kzg_proof_batch_impl)
- [Cell cosets](#cell-cosets)
- [`coset_shift_for_cell`](#coset_shift_for_cell)
- [`coset_for_cell`](#coset_for_cell)
- [Cells](#cells-1)
- [Cell computation](#cell-computation)
Expand Down Expand Up @@ -193,17 +196,17 @@ def coset_fft_field(vals: Sequence[BLSFieldElement],
roots_of_unity: Sequence[BLSFieldElement],
inv: bool=False) -> Sequence[BLSFieldElement]:
"""
Computes an FFT/IFFT over a coset of the roots of unity.
This is useful for when one wants to divide by a polynomial which
Computes an FFT/IFFT over a coset of the roots of unity.
This is useful for when one wants to divide by a polynomial which
vanishes on one or more elements in the domain.
"""
vals = vals.copy()

def shift_vals(vals: Sequence[BLSFieldElement], factor: BLSFieldElement) -> Sequence[BLSFieldElement]:
"""
Multiply each entry in `vals` by succeeding powers of `factor`
i.e., [vals[0] * factor^0, vals[1] * factor^1, ..., vals[n] * factor^n]
"""
"""
Multiply each entry in `vals` by succeeding powers of `factor`
i.e., [vals[0] * factor^0, vals[1] * factor^1, ..., vals[n] * factor^n]
"""
shift = 1
for i in range(len(vals)):
vals[i] = BLSFieldElement((int(vals[i]) * shift) % BLS_MODULUS)
Expand All @@ -222,6 +225,52 @@ def coset_fft_field(vals: Sequence[BLSFieldElement],
return fft_field(vals, roots_of_unity, inv)
```

#### `compute_verify_cell_kzg_proof_batch_challenge`

```python
def compute_verify_cell_kzg_proof_batch_challenge(row_commitments: Sequence[KZGCommitment],
row_indices: Sequence[RowIndex],
column_indices: Sequence[ColumnIndex],
cosets_evals: Sequence[CosetEvals],
proofs: Sequence[KZGProof]) -> BLSFieldElement:
"""
Compute a random challenge r used in the universal verification equation.
This is used in verify_cell_kzg_proof_batch_impl.
To compute the challenge, `RANDOM_CHALLENGE_KZG_CELL_BATCH_DOMAIN` is used as a hash prefix.
"""
# input the domain separator
hashinput = RANDOM_CHALLENGE_KZG_CELL_BATCH_DOMAIN

# input the degree bound of the polynomial
hashinput += int.to_bytes(FIELD_ELEMENTS_PER_BLOB, 8, KZG_ENDIANNESS)

# input the field elements per cell
hashinput += int.to_bytes(FIELD_ELEMENTS_PER_CELL, 8, KZG_ENDIANNESS)

# input the number of commitments
num_commitments = len(row_commitments)
hashinput += int.to_bytes(num_commitments, 8, KZG_ENDIANNESS)

# input the number of cells
num_cells = len(row_indices)
hashinput += int.to_bytes(num_cells, 8, KZG_ENDIANNESS)

# input all commitments
for commitment in row_commitments:
hashinput += commitment

# input each cell with its indices and proof
for k in range(num_cells):
hashinput += int.to_bytes(row_indices[k], 8, KZG_ENDIANNESS)
hashinput += int.to_bytes(column_indices[k], 8, KZG_ENDIANNESS)
for eval in cosets_evals[k]:
hashinput += bls_field_to_bytes(eval)
hashinput += proofs[k]

return hash_to_bls_field(hashinput)
```

### Polynomials in coefficient form

#### `polynomial_eval_to_coeff`
Expand Down Expand Up @@ -362,12 +411,12 @@ def compute_kzg_proof_multi_impl(
"""
Compute a KZG multi-evaluation proof for a set of `k` points.
This is done by committing to the following quotient polynomial:
This is done by committing to the following quotient polynomial:
Q(X) = f(X) - I(X) / Z(X)
Where:
- I(X) is the degree `k-1` polynomial that agrees with f(x) at all `k` points
- Z(X) is the degree `k` polynomial that evaluates to zero on all `k` points
We further note that since the degree of I(X) is less than the degree of Z(X),
the computation can be simplified in monomial form to Q(X) = f(X) / Z(X)
"""
Expand Down Expand Up @@ -401,7 +450,7 @@ def verify_kzg_proof_multi_impl(commitment: KZGCommitment,
Q(X) is the quotient polynomial computed by the prover
I(X) is the degree k-1 polynomial that evaluates to `ys` at all `zs`` points
Z(X) is the polynomial that evaluates to zero on all `k` points
The verifier receives the commitments to Q(X) and f(X), so they check the equation
holds by using the following pairing equation:
e([Q(X)]_1, [Z(X)]_2) == e([f(X)]_1 - [I(X)]_1, [1]_2)
Expand All @@ -423,14 +472,132 @@ def verify_kzg_proof_multi_impl(commitment: KZGCommitment,
]))
```

#### `verify_cell_kzg_proof_batch_impl`

```python
def verify_cell_kzg_proof_batch_impl(row_commitments: Sequence[KZGCommitment],
row_indices: Sequence[RowIndex],
column_indices: Sequence[ColumnIndex],
cosets_evals: Sequence[CosetEvals],
proofs: Sequence[KZGProof]) -> bool:
"""
Verify a set of cells, given their corresponding proofs and their coordinates (row_index, column_index) in the blob
matrix. The i-th cell is in row row_indices[i] and in column column_indices[i].
The list of all commitments is provided in row_commitments_bytes.
This function is the internal implementation of verify_cell_kzg_proof_batch.
"""

# The verification equation that we will check is pairing (LL, LR) = pairing (RL, [1]), where
# LL = sum_k r^k proofs[k],
# LR = [s^n]
# RL = RLC - RLI + RLP, where
# RLC = sum_i weights[i] commitments[i]
# RLI = [sum_k r^k interpolation_poly_k(s)]
# RLP = sum_k (r^k * h_k^n) proofs[k]
#
# Here, the variables have the following meaning:
# - k < len(row_indices) is an index iterating over all cells in the input
# - r is a random coefficient, derived from hashing all data provided by the prover
# - s is the secret embedded in the KZG setup
# - n = FIELD_ELEMENTS_PER_CELL is the size of the evaluation domain
# - i ranges over all rows that are touched
# - weights[i] is a weight computed for row i. It depends on r and on which cells are in row i
# - interpolation_poly_k is the interpolation polynomial for the kth cell
# - h_k is the coset shift specifying the evaluation domain of the kth cell

# Preparation
num_cells = len(row_indices)
n = FIELD_ELEMENTS_PER_CELL
num_rows = len(row_commitments)

# Step 1: Compute a challenge r and its powers r^0, ..., r^{num_cells-1}
r = compute_verify_cell_kzg_proof_batch_challenge(
row_commitments,
row_indices,
column_indices,
cosets_evals,
proofs
)
r_powers = compute_powers(r, num_cells)

# Step 2: Compute LL = sum_k r^k proofs[k]
ll = bls.bytes48_to_G1(g1_lincomb(proofs, r_powers))

# Step 3: Compute LR = [s^n]
lr = bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[n])

# Step 4: Compute RL = RLC - RLI + RLP
# Step 4.1: Compute RLC = sum_i weights[i] commitments[i]
# Step 4.1a: Compute weights[i]: the sum of all r^k for which cell k is in row i.
# Note: we do that by iterating over all k and updating the correct weights[i] accordingly
weights = [0] * num_rows
for k in range(num_cells):
i = row_indices[k]
weights[i] = (weights[i] + int(r_powers[k])) % BLS_MODULUS
# Step 4.1b: Linearly combine the weights with the commitments to get RLC
rlc = bls.bytes48_to_G1(g1_lincomb(row_commitments, weights))

# Step 4.2: Compute RLI = [sum_k r^k interpolation_poly_k(s)]
# Note: an efficient implementation would use the IDFT based method explained in the blog post
sum_interp_polys_coeff = [0]
for k in range(num_cells):
interp_poly_coeff = interpolate_polynomialcoeff(coset_for_cell(column_indices[k]), cosets_evals[k])
interp_poly_scaled_coeff = multiply_polynomialcoeff([r_powers[k]], interp_poly_coeff)
sum_interp_polys_coeff = add_polynomialcoeff(sum_interp_polys_coeff, interp_poly_scaled_coeff)
rli = bls.bytes48_to_G1(g1_lincomb(KZG_SETUP_G1_MONOMIAL[:n], sum_interp_polys_coeff))

# Step 4.3: Compute RLP = sum_k (r^k * h_k^n) proofs[k]
weighted_r_powers = []
for k in range(num_cells):
h_k = int(coset_shift_for_cell(column_indices[k]))
h_k_pow = pow(h_k, n, BLS_MODULUS)
wrp = (int(r_powers[k]) * h_k_pow) % BLS_MODULUS
weighted_r_powers.append(wrp)
rlp = bls.bytes48_to_G1(g1_lincomb(proofs, weighted_r_powers))

# Step 4.4: Compute RL = RLC - RLI + RLP
rl = bls.add(rlc, bls.neg(rli))
rl = bls.add(rl, rlp)

# Step 5: Check pairing (LL, LR) = pairing (RL, [1])
return (bls.pairing_check([
[ll, lr],
[rl, bls.neg(bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[0]))],
]))
```


### Cell cosets

#### `coset_shift_for_cell`

```python
def coset_shift_for_cell(cell_index: CellIndex) -> BLSFieldElement:
"""
Get the shift that determines the coset for a given ``cell_index``.
Precisely, consider the group of roots of unity of order FIELD_ELEMENTS_PER_CELL * CELLS_PER_EXT_BLOB.
Let G = {1, g, g^2, ...} denote its subgroup of order FIELD_ELEMENTS_PER_CELL.
Then, the coset is defined as h * G = {h, hg, hg^2, ...} for an element h.
This function returns h.
"""
assert cell_index < CELLS_PER_EXT_BLOB
roots_of_unity_brp = bit_reversal_permutation(
compute_roots_of_unity(FIELD_ELEMENTS_PER_EXT_BLOB)
)
return roots_of_unity_brp[FIELD_ELEMENTS_PER_CELL * cell_index]
```

#### `coset_for_cell`

```python
def coset_for_cell(cell_index: CellIndex) -> Coset:
"""
Get the coset for a given ``cell_index``.
Precisely, consider the group of roots of unity of order FIELD_ELEMENTS_PER_CELL * CELLS_PER_EXT_BLOB.
Let G = {1, g, g^2, ...} denote its subgroup of order FIELD_ELEMENTS_PER_CELL.
Then, the coset is defined as h * G = {h, hg, hg^2, ...}.
This function, returns the coset.
"""
assert cell_index < CELLS_PER_EXT_BLOB
roots_of_unity_brp = bit_reversal_permutation(
Expand All @@ -457,7 +624,7 @@ def compute_cells_and_kzg_proofs(blob: Blob) -> Tuple[
Public method.
"""
assert len(blob) == BYTES_PER_BLOB

polynomial = blob_to_polynomial(blob)
polynomial_coeff = polynomial_eval_to_coeff(polynomial)

Expand Down Expand Up @@ -491,7 +658,7 @@ def verify_cell_kzg_proof(commitment_bytes: Bytes48,
assert cell_index < CELLS_PER_EXT_BLOB
assert len(cell) == BYTES_PER_CELL
assert len(proof_bytes) == BYTES_PER_PROOF

coset = coset_for_cell(cell_index)

return verify_kzg_proof_multi_impl(
Expand All @@ -511,18 +678,15 @@ def verify_cell_kzg_proof_batch(row_commitments_bytes: Sequence[Bytes48],
proofs_bytes: Sequence[Bytes48]) -> bool:
"""
Verify a set of cells, given their corresponding proofs and their coordinates (row_index, column_index) in the blob
matrix. The list of all commitments is also provided in row_commitments_bytes.
matrix. The i-th cell is in row = row_indices[i] and in column = column_indices[i].
The list of all commitments is provided in row_commitments_bytes.
This function implements the naive algorithm of checking every cell
individually; an efficient algorithm can be found here:
This function implements the universal verification equation that has been introduced here:
https://ethresear.ch/t/a-universal-verification-equation-for-data-availability-sampling/13240
This implementation does not require randomness, but for the algorithm that
requires it, `RANDOM_CHALLENGE_KZG_CELL_BATCH_DOMAIN` should be used to compute
the challenge value.
Public method.
"""

assert len(cells) == len(proofs_bytes) == len(row_indices) == len(column_indices)
for commitment_bytes in row_commitments_bytes:
assert len(commitment_bytes) == BYTES_PER_COMMITMENT
Expand All @@ -535,18 +699,13 @@ def verify_cell_kzg_proof_batch(row_commitments_bytes: Sequence[Bytes48],
for proof_bytes in proofs_bytes:
assert len(proof_bytes) == BYTES_PER_PROOF

# Get commitments via row indices
commitments_bytes = [row_commitments_bytes[row_index] for row_index in row_indices]

# Get objects from bytes
commitments = [bytes_to_kzg_commitment(commitment_bytes) for commitment_bytes in commitments_bytes]
row_commitments = [bytes_to_kzg_commitment(commitment_bytes) for commitment_bytes in row_commitments_bytes]
cosets_evals = [cell_to_coset_evals(cell) for cell in cells]
proofs = [bytes_to_kzg_proof(proof_bytes) for proof_bytes in proofs_bytes]

return all(
verify_kzg_proof_multi_impl(commitment, coset_for_cell(column_index), coset_evals, proof)
for commitment, column_index, coset_evals, proof in zip(commitments, column_indices, cosets_evals, proofs)
)
# Do the actual verification
return verify_cell_kzg_proof_batch_impl(row_commitments, row_indices, column_indices, cosets_evals, proofs)
```

## Reconstruction
Expand All @@ -558,7 +717,7 @@ def construct_vanishing_polynomial(missing_cell_indices: Sequence[CellIndex]) ->
"""
Given the cells indices that are missing from the data, compute the polynomial that vanishes at every point that
corresponds to a missing field element.
This method assumes that all of the cells cannot be missing. In this case the vanishing polynomial
could be computed as Z(x) = x^n - 1, where `n` is FIELD_ELEMENTS_PER_EXT_BLOB.
Expand Down Expand Up @@ -617,7 +776,7 @@ def recover_data(cell_indices: Sequence[CellIndex],
extended_evaluation_times_zero = [BLSFieldElement(int(a) * int(b) % BLS_MODULUS)
for a, b in zip(zero_poly_eval, extended_evaluation)]

# Convert (E*Z)(x) to monomial form
# Convert (E*Z)(x) to monomial form
extended_evaluation_times_zero_coeffs = fft_field(extended_evaluation_times_zero, roots_of_unity_extended, inv=True)

# Convert (E*Z)(x) to evaluation form over a coset of the FFT domain
Expand Down Expand Up @@ -684,7 +843,7 @@ def recover_cells_and_kzg_proofs(cell_indices: Sequence[CellIndex],
recovered_cells = [
coset_evals_to_cell(reconstructed_data[i * FIELD_ELEMENTS_PER_CELL:(i + 1) * FIELD_ELEMENTS_PER_CELL])
for i in range(CELLS_PER_EXT_BLOB)]

polynomial_eval = reconstructed_data[:FIELD_ELEMENTS_PER_BLOB]
polynomial_coeff = polynomial_eval_to_coeff(polynomial_eval)
recovered_proofs = [None] * CELLS_PER_EXT_BLOB
Expand Down
Loading

0 comments on commit 83da380

Please sign in to comment.