Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Inference example and unit test for understand sentiment #8251

Merged
merged 5 commits into from
Feb 9, 2018
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/inference/tests/book/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -29,3 +29,4 @@ inference_test(image_classification ARGS vgg resnet)
inference_test(label_semantic_roles)
inference_test(rnn_encoder_decoder)
inference_test(recommender_system)
inference_test(understand_sentiment)
60 changes: 60 additions & 0 deletions paddle/inference/tests/book/test_inference_understand_sentiment.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "test_helper.h"

DEFINE_string(dirname, "", "Directory of the inference model.");

TEST(inference, understand_sentiment) {
if (FLAGS_dirname.empty()) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
}

LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::string dirname = FLAGS_dirname;

// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc

paddle::framework::LoDTensor words;
paddle::framework::LoD lod{{0, 4, 10}};
SetupLoDTensor(words, lod, static_cast<int64_t>(0), static_cast<int64_t>(10));

std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&words);

paddle::framework::LoDTensor output1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1);

// Run inference on CPU
TestInference<paddle::platform::CPUPlace>(dirname, cpu_feeds, cpu_fetchs1);
LOG(INFO) << output1.lod();
LOG(INFO) << output1.dims();

#ifdef PADDLE_WITH_CUDA
paddle::framework::LoDTensor output2;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
cpu_fetchs2.push_back(&output2);

// Run inference on CUDA GPU
TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds, cpu_fetchs2);
LOG(INFO) << output2.lod();
LOG(INFO) << output2.dims();

CheckError<float>(output1, output2);
#endif
}
62 changes: 56 additions & 6 deletions python/paddle/v2/fluid/tests/book/test_understand_sentiment.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import paddle.v2 as paddle
import contextlib
import math
import numpy as np
import sys


Expand All @@ -43,7 +44,7 @@ def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
adam_optimizer.minimize(avg_cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy
return avg_cost, accuracy, prediction


def stacked_lstm_net(data,
Expand Down Expand Up @@ -81,13 +82,18 @@ def stacked_lstm_net(data,
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
adam_optimizer.minimize(avg_cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy
return avg_cost, accuracy, prediction


def main(word_dict, net_method, use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
def create_random_lodtensor(lod, place, low, high):
data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod([lod])
return res


def train(word_dict, net_method, use_cuda, save_dirname=None):
BATCH_SIZE = 128
PASS_NUM = 5
dict_dim = len(word_dict)
Expand All @@ -96,7 +102,7 @@ def main(word_dict, net_method, use_cuda):
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
cost, acc_out = net_method(
cost, acc_out, prediction = net_method(
data, label, input_dim=dict_dim, class_dim=class_dim)

train_data = paddle.batch(
Expand All @@ -116,13 +122,57 @@ def main(word_dict, net_method, use_cuda):
fetch_list=[cost, acc_out])
print("cost=" + str(cost_val) + " acc=" + str(acc_val))
if cost_val < 0.4 and acc_val > 0.8:
if save_dirname is not None:
fluid.io.save_inference_model(save_dirname, ["words"],
prediction, exe)
return
if math.isnan(float(cost_val)):
sys.exit("got NaN loss, training failed.")
raise AssertionError("Cost is too large for {0}".format(
net_method.__name__))


def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return

place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)

# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

lod = [0, 4, 10]
tensor_words = create_random_lodtensor(lod, place, low=0, high=1)
Copy link
Contributor

@sidgoyal78 sidgoyal78 Feb 9, 2018

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe we can extend the high to len(word_dict) - 1
We can get word_dict as: word_dict = paddle.dataset.imdb.word_dict()

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good point! Done


# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == "words"
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_words},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
print("Inference results: ", np_data)


def main(word_dict, net_method, use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return

# Directory for saving the trained model
save_dirname = "understand_sentiment.inference.model"

train(word_dict, net_method, use_cuda, save_dirname)
infer(use_cuda, save_dirname)


class TestUnderstandSentiment(unittest.TestCase):
@classmethod
def setUpClass(cls):
Expand Down