|
| 1 | +""" |
| 2 | +
|
| 3 | +This script calculates the observation scalars (H matrix) for fusing optical flow |
| 4 | +measurements for terrain estimation. |
| 5 | +
|
| 6 | +@author: roman |
| 7 | +""" |
| 8 | + |
| 9 | +from sympy import * |
| 10 | + |
| 11 | +# q: quaternion describing rotation from frame 1 to frame 2 |
| 12 | +# returns a rotation matrix derived form q which describes the same |
| 13 | +# rotation |
| 14 | +def quat2Rot(q): |
| 15 | + q0 = q[0] |
| 16 | + q1 = q[1] |
| 17 | + q2 = q[2] |
| 18 | + q3 = q[3] |
| 19 | + |
| 20 | + Rot = Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2*(q1*q2 - q0*q3), 2*(q1*q3 + q0*q2)], |
| 21 | + [2*(q1*q2 + q0*q3), q0**2 - q1**2 + q2**2 - q3**2, 2*(q2*q3 - q0*q1)], |
| 22 | + [2*(q1*q3-q0*q2), 2*(q2*q3 + q0*q1), q0**2 - q1**2 - q2**2 + q3**2]]) |
| 23 | + |
| 24 | + return Rot |
| 25 | + |
| 26 | +# take an expression calculated by the cse() method and write the expression |
| 27 | +# into a text file in C format |
| 28 | +def write_simplified(P_touple, filename, out_name): |
| 29 | + subs = P_touple[0] |
| 30 | + P = Matrix(P_touple[1]) |
| 31 | + fd = open(filename, 'a') |
| 32 | + |
| 33 | + is_vector = P.shape[0] == 1 or P.shape[1] == 1 |
| 34 | + |
| 35 | + # write sub expressions |
| 36 | + for index, item in enumerate(subs): |
| 37 | + fd.write('float ' + str(item[0]) + ' = ' + str(item[1]) + ';\n') |
| 38 | + |
| 39 | + # write actual matrix values |
| 40 | + fd.write('\n') |
| 41 | + |
| 42 | + if not is_vector: |
| 43 | + iterator = range(0,sqrt(len(P)), 1) |
| 44 | + for row in iterator: |
| 45 | + for column in iterator: |
| 46 | + fd.write(out_name + '(' + str(row) + ',' + str(column) + ') = ' + str(P[row, column]) + ';\n') |
| 47 | + else: |
| 48 | + iterator = range(0, len(P), 1) |
| 49 | + |
| 50 | + for item in iterator: |
| 51 | + fd.write(out_name + '(' + str(item) + ') = ' + str(P[item]) + ';\n') |
| 52 | + |
| 53 | + fd.write('\n\n') |
| 54 | + fd.close() |
| 55 | + |
| 56 | +########## Symbolic variable definition ####################################### |
| 57 | + |
| 58 | + |
| 59 | +# vehicle velocity |
| 60 | +v_x = Symbol("v_x", real=True) # vehicle body x velocity |
| 61 | +v_y = Symbol("v_y", real=True) # vehicle body y velocity |
| 62 | + |
| 63 | +# unit quaternion describing vehicle attitude, qw is real part |
| 64 | +qw = Symbol("q0", real=True) |
| 65 | +qx = Symbol("q1", real=True) |
| 66 | +qy = Symbol("q2", real=True) |
| 67 | +qz = Symbol("q3", real=True) |
| 68 | +q_att = Matrix([qw, qx, qy, qz]) |
| 69 | + |
| 70 | +# terrain vertial position in local NED frame |
| 71 | +_terrain_vpos = Symbol("_terrain_vpos", real=True) |
| 72 | + |
| 73 | +_terrain_var = Symbol("_terrain_var", real=True) |
| 74 | + |
| 75 | +# vehicle vertical position in local NED frame |
| 76 | +pos_z = Symbol("z", real=True) |
| 77 | + |
| 78 | +R_body_to_earth = quat2Rot(q_att) |
| 79 | + |
| 80 | +# Optical flow around x axis |
| 81 | +flow_x = -v_y / (_terrain_vpos - pos_z) * R_body_to_earth[2,2] |
| 82 | + |
| 83 | +# Calculate observation scalar |
| 84 | +H_x = Matrix([flow_x]).jacobian(Matrix([_terrain_vpos])) |
| 85 | + |
| 86 | +H_x_simple = cse(H_x, symbols('t0:30')) |
| 87 | + |
| 88 | +# Optical flow around y axis |
| 89 | +flow_y = v_x / (_terrain_vpos - pos_z) * R_body_to_earth[2,2] |
| 90 | + |
| 91 | +# Calculate observation scalar |
| 92 | +H_y = Matrix([flow_y]).jacobian(Matrix([_terrain_vpos])) |
| 93 | + |
| 94 | +H_y_simple = cse(H_y, symbols('t0:30')) |
| 95 | + |
| 96 | +write_simplified(H_x_simple, "flow_x_observation.txt", "Hx") |
| 97 | +write_simplified(H_y_simple, "flow_y_observation.txt", "Hy") |
| 98 | + |
0 commit comments