|
| 1 | +/**************************************************************************** |
| 2 | + * |
| 3 | + * Copyright (C) 2020 PX4 Development Team. All rights reserved. |
| 4 | + * |
| 5 | + * Redistribution and use in source and binary forms, with or without |
| 6 | + * modification, are permitted provided that the following conditions |
| 7 | + * are met: |
| 8 | + * |
| 9 | + * 1. Redistributions of source code must retain the above copyright |
| 10 | + * notice, this list of conditions and the following disclaimer. |
| 11 | + * 2. Redistributions in binary form must reproduce the above copyright |
| 12 | + * notice, this list of conditions and the following disclaimer in |
| 13 | + * the documentation and/or other materials provided with the |
| 14 | + * distribution. |
| 15 | + * 3. Neither the name PX4 nor the names of its contributors may be |
| 16 | + * used to endorse or promote products derived from this software |
| 17 | + * without specific prior written permission. |
| 18 | + * |
| 19 | + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 22 | + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 23 | + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 24 | + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 25 | + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| 26 | + * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| 27 | + * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 28 | + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| 29 | + * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | + * POSSIBILITY OF SUCH DAMAGE. |
| 31 | + * |
| 32 | + ****************************************************************************/ |
| 33 | + |
| 34 | +/** |
| 35 | + * Test code for the Zero Order Hover Thrust Estimator |
| 36 | + * Run this test only using make tests TESTFILTER=zero_order_hover_thrust_ekf |
| 37 | + */ |
| 38 | + |
| 39 | +#include <gtest/gtest.h> |
| 40 | +#include <matrix/matrix/math.hpp> |
| 41 | +#include <random> |
| 42 | + |
| 43 | +#include "zero_order_hover_thrust_ekf.hpp" |
| 44 | + |
| 45 | +using namespace matrix; |
| 46 | + |
| 47 | +class ZeroOrderHoverThrustEkfTest : public ::testing::Test |
| 48 | +{ |
| 49 | +public: |
| 50 | + float computeAccelFromThrustAndHoverThrust(float thrust, float hover_thrust); |
| 51 | + ZeroOrderHoverThrustEkf::status runEkf(float accel, float thrust, float time, float accel_noise = 0.f, |
| 52 | + float thr_noise = 0.f); |
| 53 | + |
| 54 | + std::normal_distribution<float> standard_normal_distribution_; |
| 55 | + std::default_random_engine random_generator_; // Pseudo-random generator with constant seed |
| 56 | + |
| 57 | +private: |
| 58 | + ZeroOrderHoverThrustEkf _ekf{}; |
| 59 | + static constexpr float _dt = 0.02f; |
| 60 | +}; |
| 61 | + |
| 62 | +float ZeroOrderHoverThrustEkfTest::computeAccelFromThrustAndHoverThrust(float thrust, float hover_thrust) |
| 63 | +{ |
| 64 | + return CONSTANTS_ONE_G * thrust / hover_thrust - CONSTANTS_ONE_G; |
| 65 | +} |
| 66 | + |
| 67 | +ZeroOrderHoverThrustEkf::status ZeroOrderHoverThrustEkfTest::runEkf(float accel, float thrust, float time, |
| 68 | + float accel_noise, float thr_noise) |
| 69 | +{ |
| 70 | + ZeroOrderHoverThrustEkf::status status{}; |
| 71 | + |
| 72 | + for (float t = 0.f; t <= time; t += _dt) { |
| 73 | + _ekf.predict(_dt); |
| 74 | + float noisy_accel = accel + accel_noise * standard_normal_distribution_(random_generator_); |
| 75 | + float noisy_thrust = thrust + thr_noise * standard_normal_distribution_(random_generator_); |
| 76 | + _ekf.fuseAccZ(noisy_accel, noisy_thrust, status); |
| 77 | + } |
| 78 | + |
| 79 | + return status; |
| 80 | +} |
| 81 | + |
| 82 | +TEST_F(ZeroOrderHoverThrustEkfTest, testStaticCase) |
| 83 | +{ |
| 84 | + // GIVEN: a vehicle at hover, (the estimator starting at the true value) |
| 85 | + const float thrust = 0.5f; |
| 86 | + const float hover_thrust_true = 0.5f; |
| 87 | + const float accel_meas = 0.f; |
| 88 | + |
| 89 | + // WHEN: we input noiseless data and run the filter |
| 90 | + ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, 1.f); |
| 91 | + |
| 92 | + // THEN: The estimate should not move and its variance decrease quickly |
| 93 | + EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 1e-4f); |
| 94 | + EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
| 95 | + EXPECT_NEAR(status.accel_noise_var, 0.f, 1.f); // The noise learning is slow and takes more than 1s to go to zero |
| 96 | +} |
| 97 | + |
| 98 | +TEST_F(ZeroOrderHoverThrustEkfTest, testStaticConvergence) |
| 99 | +{ |
| 100 | + // GIVEN: a vehicle at hover, but the estimator is starting at hover_thrust = 0.5 |
| 101 | + const float thrust = 0.72f; |
| 102 | + const float hover_thrust_true = 0.72f; |
| 103 | + const float accel_meas = computeAccelFromThrustAndHoverThrust(thrust, hover_thrust_true); |
| 104 | + |
| 105 | + // WHEN: we input noiseless data and run the filter |
| 106 | + ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, 2.f); |
| 107 | + |
| 108 | + // THEN: the state should converge to the true value and its variance decrease |
| 109 | + EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 1e-2f); |
| 110 | + EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
| 111 | + EXPECT_NEAR(status.accel_noise_var, 0.f, 1.f); // The noise learning is slow and takes more than 1s to go to zero |
| 112 | +} |
| 113 | + |
| 114 | +TEST_F(ZeroOrderHoverThrustEkfTest, testStaticConvergenceWithNoise) |
| 115 | +{ |
| 116 | + // GIVEN: a vehicle at hover, the estimator starts with the wrong estimate and the measurements are noisy |
| 117 | + const float sigma_noise = 3.f; |
| 118 | + const float noise_var = sigma_noise * sigma_noise; |
| 119 | + const float thrust = 0.72f; |
| 120 | + const float hover_thrust_true = 0.72f; |
| 121 | + const float accel_meas = computeAccelFromThrustAndHoverThrust(thrust, hover_thrust_true); |
| 122 | + const float t_sim = 10.f; |
| 123 | + |
| 124 | + // WHEN: we input noisy accel data and run the filter |
| 125 | + ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, t_sim, sigma_noise); |
| 126 | + |
| 127 | + // THEN: the estimate should converge and the accel noise variance should be close to the true noise value |
| 128 | + EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 5e-2f); |
| 129 | + EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
| 130 | + EXPECT_NEAR(status.accel_noise_var, noise_var, 0.3f * noise_var); |
| 131 | +} |
| 132 | + |
| 133 | +TEST_F(ZeroOrderHoverThrustEkfTest, testLargeAccelNoiseAndBias) |
| 134 | +{ |
| 135 | + // GIVEN: a vehicle descending, the estimator starts with the wrong estimate, the measurements are really noisy |
| 136 | + const float sigma_noise = 7.f; |
| 137 | + const float noise_var = sigma_noise * sigma_noise; |
| 138 | + const float thrust = 0.4f; // Below hover thrust |
| 139 | + const float hover_thrust_true = 0.72f; |
| 140 | + const float accel_meas = computeAccelFromThrustAndHoverThrust(thrust, hover_thrust_true); |
| 141 | + const float t_sim = 15.f; |
| 142 | + |
| 143 | + // WHEN: we input noisy accel data and run the filter |
| 144 | + ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, t_sim, sigma_noise); |
| 145 | + |
| 146 | + // THEN: the estimate should converge and the accel noise variance should be close to the true noise value |
| 147 | + EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 5e-2); |
| 148 | + EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
| 149 | + EXPECT_NEAR(status.accel_noise_var, noise_var, 0.2f * noise_var); |
| 150 | +} |
| 151 | + |
| 152 | +TEST_F(ZeroOrderHoverThrustEkfTest, testThrustAndAccelNoise) |
| 153 | +{ |
| 154 | + // GIVEN: a vehicle climbing, the estimator starts with the wrong estimate, the measurements |
| 155 | + // and the input thrust are noisy |
| 156 | + const float accel_noise = 2.f; |
| 157 | + const float accel_var = accel_noise * accel_noise; |
| 158 | + const float thr_noise = 0.1f; |
| 159 | + const float thrust = 0.72f; // Above hover thrust |
| 160 | + const float hover_thrust_true = 0.6f; |
| 161 | + const float accel_meas = computeAccelFromThrustAndHoverThrust(thrust, hover_thrust_true); |
| 162 | + const float t_sim = 15.f; |
| 163 | + |
| 164 | + // WHEN: we input noisy accel and thrust data, and run the filter |
| 165 | + ZeroOrderHoverThrustEkf::status status = runEkf(accel_meas, thrust, t_sim, accel_noise, thr_noise); |
| 166 | + |
| 167 | + // THEN: the estimate should converge and the accel noise variance should be close to the true noise value |
| 168 | + EXPECT_NEAR(status.hover_thrust, hover_thrust_true, 5e-2f); |
| 169 | + EXPECT_NEAR(status.hover_thrust_var, 0.f, 1e-3f); |
| 170 | + // Because of the nonlinear measurment model and the thust noise, the accel noise estimation is a bit worse |
| 171 | + EXPECT_NEAR(status.accel_noise_var, accel_var, 0.5f * accel_var); |
| 172 | +} |
0 commit comments