Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Spp 5901 rename methods #90

Merged
merged 5 commits into from
Jul 6, 2022
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
renamed outliering function name
vidhyamanisankar committed Jul 6, 2022

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature. The key has expired.
commit b7bb636f0c47a4755285b4f1a516c613d8922f48
2 changes: 1 addition & 1 deletion statistical_methods_library/outliering.py
Original file line number Diff line number Diff line change
@@ -31,7 +31,7 @@ class Marker(Enum):
"""The value has not been winsorised because design * calibration is <= 1."""


def winsorisation(
def winsorise(
input_df: DataFrame,
reference_col: str,
period_col: str,
46 changes: 23 additions & 23 deletions tests/test_outlering.py
Original file line number Diff line number Diff line change
@@ -74,7 +74,7 @@
"tests",
"fixture_data",
"outliering",
"winsorisation",
"winsorise",
f"{scenario_category}_scenarios",
"*_input.csv",
)
@@ -94,7 +94,7 @@
def test_input_not_a_dataframe():
with pytest.raises(TypeError):
# noinspection PyTypeChecker
outliering.winsorisation("not_a_dataframe", *params)
outliering.winsorise("not_a_dataframe", *params)


# --- Test if params not strings ---
@@ -106,7 +106,7 @@ def test_params_not_string(fxt_load_test_csv):
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
"unit",
"basic_functionality",
)
@@ -120,7 +120,7 @@ def test_params_not_string(fxt_load_test_csv):
outlier_weight_col,
)
with pytest.raises(TypeError):
outliering.winsorisation(test_dataframe, *bad_params)
outliering.winsorise(test_dataframe, *bad_params)


# --- Test if params null ---
@@ -132,7 +132,7 @@ def test_params_null(fxt_load_test_csv):
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
"unit",
"basic_functionality",
)
@@ -146,7 +146,7 @@ def test_params_null(fxt_load_test_csv):
outlier_weight_col,
)
with pytest.raises(ValueError):
outliering.winsorisation(test_dataframe, *bad_params)
outliering.winsorise(test_dataframe, *bad_params)


# --- Test validation fail if mismatched calibration cols ---
@@ -158,7 +158,7 @@ def test_params_mismatched_calibration_cols(fxt_load_test_csv):
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
"unit",
"basic_functionality",
)
@@ -173,7 +173,7 @@ def test_params_mismatched_calibration_cols(fxt_load_test_csv):
calibration_weight_col,
)
with pytest.raises(TypeError):
outliering.winsorisation(test_dataframe, *bad_params)
outliering.winsorise(test_dataframe, *bad_params)


# --- Test validation fail if nulls in data ---
@@ -185,12 +185,12 @@ def test_dataframe_nulls_in_data(fxt_load_test_csv):
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
"unit",
"null_value_present",
)
with pytest.raises(outliering.ValidationError):
outliering.winsorisation(test_dataframe, *params)
outliering.winsorise(test_dataframe, *params)


# --- Test if cols missing from input dataframe(s) ---
@@ -202,13 +202,13 @@ def test_dataframe_column_missing(fxt_load_test_csv):
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
"unit",
"basic_functionality",
)
bad_dataframe = test_dataframe.drop(target_col)
with pytest.raises(outliering.ValidationError):
outliering.winsorisation(bad_dataframe, *params)
outliering.winsorise(bad_dataframe, *params)


# --- Test if output contents are as expected, both new columns and data ---
@@ -220,13 +220,13 @@ def test_dataframe_returned_as_expected(fxt_spark_session, fxt_load_test_csv):
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
"unit",
"basic_functionality",
)
# Make sure that no extra columns pass through.
test_dataframe = test_dataframe.withColumn("bonus_column", lit(0))
ret_val = outliering.winsorisation(test_dataframe, *params)
ret_val = outliering.winsorise(test_dataframe, *params)
# perform action on the dataframe to trigger lazy evaluation...
ret_val.count()
# ...and then check
@@ -242,11 +242,11 @@ def test_dataframe_expected_columns(fxt_spark_session, fxt_load_test_csv):
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
"unit",
"basic_functionality",
)
ret_val = outliering.winsorisation(
ret_val = outliering.winsorise(
test_dataframe,
*default_params,
)
@@ -283,7 +283,7 @@ def test_calculations(fxt_load_test_csv, scenario_type, scenario):
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
scenario_type,
f"{scenario}_input",
)
@@ -297,12 +297,12 @@ def test_calculations(fxt_load_test_csv, scenario_type, scenario):
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
scenario_type,
f"{scenario}_output",
)

ret_val = outliering.winsorisation(test_dataframe, *params, **winsorisation_kwargs)
ret_val = outliering.winsorise(test_dataframe, *params, **winsorisation_kwargs)

assert isinstance(ret_val, type(test_dataframe))
sort_col_list = [reference_col, period_col]
@@ -320,13 +320,13 @@ def test_winsorise_different_stratum_l_values_in_same_period_fails(fxt_load_test
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
"unit",
"different_l_values_stratum_same_period",
)

with pytest.raises(outliering.ValidationError):
outliering.winsorisation(
outliering.winsorise(
test_dataframe,
*default_params,
)
@@ -340,12 +340,12 @@ def test_winsorise_different_stratum_l_values_in_different_periods_succeeds(
dataframe_columns,
dataframe_types,
"outliering",
"winsorisation",
"winsorise",
"unit",
"different_l_values_stratum_different_periods",
)

outliering.winsorisation(
outliering.winsorise(
test_dataframe,
*default_params,
)