Skip to content

Commit

Permalink
bumping pipeline with updated model prediction component
Browse files Browse the repository at this point in the history
  • Loading branch information
babu-namburi committed Mar 6, 2025
1 parent d7e79d0 commit 0b9fd48
Show file tree
Hide file tree
Showing 39 changed files with 1,226 additions and 1,367 deletions.
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json
name: chat_completion_finetune
version: 0.0.70
version: 0.0.71
type: command

is_deterministic: True
is_deterministic: true

display_name: Chat Completion Finetune
description: Component to finetune Hugging Face pretrained models for chat completion task. The component supports optimizations such as LoRA, Deepspeed and ONNXRuntime for performance enhancement. See [docs](https://aka.ms/azureml/components/chat_completion_finetune) to learn more.
Expand All @@ -21,17 +21,17 @@ inputs:
apply_lora:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: If "true" enables lora.

merge_lora_weights:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "true"
optional: true
description: If "true", the lora weights are merged with the base Hugging Face model weights before saving.
Expand Down Expand Up @@ -85,8 +85,8 @@ inputs:
auto_find_batch_size:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: If set to "true" and if the provided 'per_device_train_batch_size' goes into Out Of Memory (OOM) auto_find_batch_size will find the correct batch size by iteratively reducing batch size by a factor of 2 till the OOM is fixed
Expand All @@ -96,10 +96,10 @@ inputs:
default: adamw_hf
optional: true
enum:
- adamw_hf
- adamw_torch
- adamw_hf
- adamw_torch
# - adamw_apex_fused
- adafactor
- adafactor
description: Optimizer to be used while training

learning_rate:
Expand Down Expand Up @@ -155,19 +155,19 @@ inputs:
default: linear
optional: true
enum:
- linear
- cosine
- cosine_with_restarts
- polynomial
- constant
- constant_with_warmup
- linear
- cosine
- cosine_with_restarts
- polynomial
- constant
- constant_with_warmup
description: learning rate scheduler to use.

precision:
type: string
enum:
- "32"
- "16"
- "32"
- "16"
default: "32"
optional: true
description: Apply mixed precision training. This can reduce memory footprint by performing operations in half-precision.
Expand All @@ -181,8 +181,8 @@ inputs:
enable_full_determinism:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: Ensure reproducible behavior during distributed training. Check this link https://pytorch.org/docs/stable/notes/randomness.html for more details.
Expand All @@ -196,8 +196,8 @@ inputs:
ignore_mismatched_sizes:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: Not setting this flag will raise an error if some of the weights from the checkpoint do not have the same size as the weights of the model.
Expand All @@ -213,8 +213,8 @@ inputs:
default: epoch
optional: true
enum:
- epoch
- steps
- epoch
- steps
description: The evaluation strategy to adopt during training. If set to "steps", either the `evaluation_steps_interval` or `eval_steps` needs to be specified, which helps to determine the step at which the model evaluation needs to be computed else evaluation happens at end of each epoch.

evaluation_steps_interval:
Expand All @@ -234,8 +234,8 @@ inputs:
default: steps
optional: true
enum:
- epoch
- steps
- epoch
- steps
description: The logging strategy to adopt during training. If set to "steps", the `logging_steps` will decide the frequency of logging else logging happens at the end of epoch.

logging_steps:
Expand All @@ -249,18 +249,18 @@ inputs:
default: loss
optional: true
enum:
- loss
- f1
- exact
- loss
- f1
- exact
description: metric to use to compare two different model checkpoints

resume_from_checkpoint:
type: string
default: "false"
optional: true
enum:
- "true"
- "false"
- "true"
- "false"
description: If set to "true", resumes the training from last saved checkpoint. Along with loading the saved weights, saved optimizer, scheduler and random states will be loaded if exist. The default value is "false"

save_total_limit:
Expand All @@ -275,8 +275,8 @@ inputs:
default: "false"
optional: true
enum:
- "true"
- "false"
- "true"
- "false"
description: If set to "true", early stopping is enabled.

early_stopping_patience:
Expand All @@ -297,8 +297,8 @@ inputs:
apply_deepspeed:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: If set to true, will enable deepspeed for training
Expand All @@ -314,17 +314,17 @@ inputs:
optional: true
default: "2"
enum:
- "2"
- "3"
- "2"
- "3"
description: This parameter configures which DEFAULT deepspeed config to be used - stage2 or stage3. The default choice is stage2. Note that, this parameter is ONLY applicable when user doesn't pass any config information via deepspeed port.

# ORT Parameters
# ONNX Runtime is a cross-platform machine-learning model accelerator, with a flexible interface to integrate hardware-specific libraries.
apply_ort:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: If set to true, will use the ONNXRunTime training
Expand Down
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json
name: question_answering_finetune
version: 0.0.70
version: 0.0.71
type: command

is_deterministic: True
is_deterministic: true

display_name: Question Answering Finetune
description: Component to finetune Hugging Face pretrained models for extractive question answering task. The component supports optimizations such as LoRA, Deepspeed and ONNXRuntime for performance enhancement. See [docs](https://aka.ms/azureml/components/question_answering_finetune) to learn more.
Expand All @@ -21,17 +21,17 @@ inputs:
apply_lora:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: If "true" enables lora.

merge_lora_weights:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "true"
optional: true
description: If "true", the lora weights are merged with the base Hugging Face model weights before saving.
Expand Down Expand Up @@ -85,8 +85,8 @@ inputs:
auto_find_batch_size:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: If set to "true" and if the provided 'per_device_train_batch_size' goes into Out Of Memory (OOM) auto_find_batch_size will find the correct batch size by iteratively reducing batch size by a factor of 2 till the OOM is fixed
Expand All @@ -96,10 +96,10 @@ inputs:
default: adamw_hf
optional: true
enum:
- adamw_hf
- adamw_torch
- adamw_hf
- adamw_torch
# - adamw_apex_fused
- adafactor
- adafactor
description: Optimizer to be used while training

learning_rate:
Expand Down Expand Up @@ -155,19 +155,19 @@ inputs:
default: linear
optional: true
enum:
- linear
- cosine
- cosine_with_restarts
- polynomial
- constant
- constant_with_warmup
- linear
- cosine
- cosine_with_restarts
- polynomial
- constant
- constant_with_warmup
description: learning rate scheduler to use.

precision:
type: string
enum:
- "32"
- "16"
- "32"
- "16"
default: "32"
optional: true
description: Apply mixed precision training. This can reduce memory footprint by performing operations in half-precision.
Expand All @@ -181,8 +181,8 @@ inputs:
enable_full_determinism:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: Ensure reproducible behavior during distributed training. Check this link https://pytorch.org/docs/stable/notes/randomness.html for more details.
Expand All @@ -196,8 +196,8 @@ inputs:
ignore_mismatched_sizes:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "true"
optional: true
description: Not setting this flag will raise an error if some of the weights from the checkpoint do not have the same size as the weights of the model.
Expand All @@ -213,8 +213,8 @@ inputs:
default: epoch
optional: true
enum:
- epoch
- steps
- epoch
- steps
description: The evaluation strategy to adopt during training. If set to "steps", either the `evaluation_steps_interval` or `eval_steps` needs to be specified, which helps to determine the step at which the model evaluation needs to be computed else evaluation happens at end of each epoch.

evaluation_steps_interval:
Expand All @@ -234,8 +234,8 @@ inputs:
default: steps
optional: true
enum:
- epoch
- steps
- epoch
- steps
description: The logging strategy to adopt during training. If set to "steps", the `logging_steps` will decide the frequency of logging else logging happens at the end of epoch.

logging_steps:
Expand All @@ -249,18 +249,18 @@ inputs:
default: loss
optional: true
enum:
- loss
- f1
- exact
- loss
- f1
- exact
description: metric to use to compare two different model checkpoints

resume_from_checkpoint:
type: string
default: "false"
optional: true
enum:
- "true"
- "false"
- "true"
- "false"
description: If set to "true", resumes the training from last saved checkpoint. Along with loading the saved weights, saved optimizer, scheduler and random states will be loaded if exist. The default value is "false"

save_total_limit:
Expand All @@ -275,8 +275,8 @@ inputs:
default: "false"
optional: true
enum:
- "true"
- "false"
- "true"
- "false"
description: If set to "true", early stopping is enabled.

early_stopping_patience:
Expand All @@ -297,8 +297,8 @@ inputs:
apply_deepspeed:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: If set to true, will enable deepspeed for training
Expand All @@ -314,17 +314,17 @@ inputs:
optional: true
default: "2"
enum:
- "2"
- "3"
- "2"
- "3"
description: This parameter configures which DEFAULT deepspeed config to be used - stage2 or stage3. The default choice is stage2. Note that, this parameter is ONLY applicable when user doesn't pass any config information via deepspeed port.

# ORT Parameters
# ONNX Runtime is a cross-platform machine-learning model accelerator, with a flexible interface to integrate hardware-specific libraries.
apply_ort:
type: string
enum:
- "true"
- "false"
- "true"
- "false"
default: "false"
optional: true
description: If set to true, will use the ONNXRunTime training
Expand Down
Loading

0 comments on commit 0b9fd48

Please sign in to comment.