|
| 1 | +# This file is part of PSAMM. |
| 2 | +# |
| 3 | +# PSAMM is free software: you can redistribute it and/or modify |
| 4 | +# it under the terms of the GNU General Public License as published by |
| 5 | +# the Free Software Foundation, either version 3 of the License, or |
| 6 | +# (at your option) any later version. |
| 7 | +# |
| 8 | +# PSAMM is distributed in the hope that it will be useful, |
| 9 | +# but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | +# GNU General Public License for more details. |
| 12 | +# |
| 13 | +# You should have received a copy of the GNU General Public License |
| 14 | +# along with PSAMM. If not, see <http://www.gnu.org/licenses/>. |
| 15 | +# |
| 16 | +# Copyright 2014-2017 Jon Lund Steffensen <[email protected]> |
| 17 | +# Copyright 2016 Keith Dufault-Thompson <[email protected]> |
| 18 | +# Copyright 2016 Julie Cuddigan <[email protected]> |
| 19 | + |
| 20 | +"""Metabolic Adjustment by Differential Expression (MADE) command.""" |
| 21 | + |
| 22 | +from __future__ import unicode_literals |
| 23 | + |
| 24 | +import time |
| 25 | +import logging |
| 26 | +import math |
| 27 | +import csv |
| 28 | + |
| 29 | +from six import iteritems |
| 30 | + |
| 31 | +from ..command import SolverCommandMixin, MetabolicMixin, Command |
| 32 | +from ..util import MaybeRelative |
| 33 | +from ..lpsolver import lp |
| 34 | +from ..expression import boolean |
| 35 | + |
| 36 | +# Module-level logging |
| 37 | +logger = logging.getLogger(__name__) |
| 38 | + |
| 39 | + |
| 40 | +class MadeFluxBalance(MetabolicMixin, SolverCommandMixin, Command): |
| 41 | + """Run MADE flux balance analysis on the model. |
| 42 | +
|
| 43 | + Args: |
| 44 | + gene_var1 = Dictionary, key:value = gene expression objects:their new |
| 45 | + variable id, first set |
| 46 | + gene_var2 = Dictionary; key:value = gene expression objects:their new |
| 47 | + variable id, second set |
| 48 | + var_ineqvar1 = xi; Dictionary, key:value = new variable ids:their |
| 49 | + defined inequality variable, first set |
| 50 | + var_ineqvar2 = xi+1; Dictionary, key:value = new variable ids:their |
| 51 | + defined inequality variable, second set |
| 52 | + gene_pval = Dictionary, key:value = gene ID:gene fold change |
| 53 | + probability (pvalue) |
| 54 | + gene_diff = Dictionary, key:value = gene ID: binary up/down/constant |
| 55 | + regulation values |
| 56 | + gvdict = Dictionary, key:value = gene ID:defined variable ids from both |
| 57 | + sets (each key has 2 values) |
| 58 | + problem = Flux balance problem |
| 59 | + """ |
| 60 | + |
| 61 | + @classmethod |
| 62 | + def init_parser(cls, parser): |
| 63 | + parser.add_argument( |
| 64 | + '--flux-threshold', |
| 65 | + help='Enter maximum objective flux as a decimal or percent', |
| 66 | + type=MaybeRelative, default=MaybeRelative('100%')) |
| 67 | + parser.add_argument( |
| 68 | + '--transc-file', help='Enter path to transcriptomic data file', |
| 69 | + metavar='FILE') |
| 70 | + parser.add_argument('--fva', help='Enable FVA', action='store_true') |
| 71 | + super(MadeFluxBalance, cls).init_parser(parser) |
| 72 | + |
| 73 | + def run(self): |
| 74 | + """Run MADE implementation.""" |
| 75 | + gene_dict = self.get_gene_dict() |
| 76 | + |
| 77 | + biomass_fun = self._model.biomass_reaction |
| 78 | + |
| 79 | + # Create problem instance |
| 80 | + solver = self._get_solver(integer=True) |
| 81 | + prob = solver.create_problem() |
| 82 | + v_0 = prob.namespace() |
| 83 | + v_1 = prob.namespace() |
| 84 | + |
| 85 | + # Define flux variables |
| 86 | + for reaction_id in self._mm.reactions: |
| 87 | + lower, upper = self._mm.limits[reaction_id] |
| 88 | + v_0.define([reaction_id], lower=lower, upper=upper) |
| 89 | + v_1.define([reaction_id], lower=lower, upper=upper) |
| 90 | + |
| 91 | + # Create mass balance constraints for both conditions |
| 92 | + massbalance_0_lhs = {compound: 0 for compound in self._mm.compounds} |
| 93 | + massbalance_1_lhs = {compound: 0 for compound in self._mm.compounds} |
| 94 | + for (compound, reaction_id), value in iteritems(self._mm.matrix): |
| 95 | + massbalance_0_lhs[compound] += v_0(reaction_id) * value |
| 96 | + massbalance_1_lhs[compound] += v_1(reaction_id) * value |
| 97 | + for _, lhs in iteritems(massbalance_0_lhs): |
| 98 | + prob.add_linear_constraints(lhs == 0) |
| 99 | + for _, lhs in iteritems(massbalance_1_lhs): |
| 100 | + prob.add_linear_constraints(lhs == 0) |
| 101 | + |
| 102 | + start_time = time.time() |
| 103 | + |
| 104 | + # Set biomass flux threshold |
| 105 | + flux_threshold = self._args.flux_threshold |
| 106 | + if flux_threshold.relative: |
| 107 | + prob.set_objective(v_0(biomass_fun)) |
| 108 | + result = prob.solve(lp.ObjectiveSense.Maximize) |
| 109 | + if not result: |
| 110 | + raise Exception('Failed to solve FBA') |
| 111 | + flux_threshold.reference = result.get_value(v_0(biomass_fun)) |
| 112 | + |
| 113 | + prob.add_linear_constraints(v_0(biomass_fun) >= float(flux_threshold)) |
| 114 | + prob.add_linear_constraints(v_1(biomass_fun) >= float(flux_threshold)) |
| 115 | + |
| 116 | + gene_term_0 = prob.namespace() |
| 117 | + gene_term_1 = prob.namespace() |
| 118 | + |
| 119 | + reaction_0 = prob.namespace( |
| 120 | + self._mm.reactions, types=lp.VariableType.Binary) |
| 121 | + reaction_1 = prob.namespace( |
| 122 | + self._mm.reactions, types=lp.VariableType.Binary) |
| 123 | + |
| 124 | + gene_term_dict_0 = {} |
| 125 | + gene_term_dict_1 = {} |
| 126 | + for rxn_id, exp in sorted(iteritems(gene_dict)): |
| 127 | + create_gpr_constraints( |
| 128 | + prob, rxn_id, exp, reaction_0(rxn_id), gene_term_0, |
| 129 | + gene_term_dict_0) |
| 130 | + create_gpr_constraints( |
| 131 | + prob, rxn_id, exp, reaction_1(rxn_id), gene_term_1, |
| 132 | + gene_term_dict_1) |
| 133 | + |
| 134 | + if self._args.transc_file is not None: |
| 135 | + con1, con2, gene_pval, gene_diff = idc( |
| 136 | + open_file(self._args.transc_file)) |
| 137 | + |
| 138 | + add_final_constraints(self._mm, prob, v_0, reaction_0) |
| 139 | + add_final_constraints(self._mm, prob, v_1, reaction_1) |
| 140 | + result = make_obj_fun( |
| 141 | + prob, gene_diff, gene_pval, gene_term_0, gene_term_1) |
| 142 | + |
| 143 | + # Run FBA |
| 144 | + for reaction_id in sorted(self._mm.reactions): |
| 145 | + print('{}\t{}\t{}\t{}\t{}\t{}\t{}'.format( |
| 146 | + reaction_id, result.get_value(v_0(reaction_id)), |
| 147 | + result.get_value(v_1(reaction_id)), |
| 148 | + result.get_value(reaction_0(reaction_id)) > 0.5, |
| 149 | + result.get_value(reaction_1(reaction_id)) > 0.5, |
| 150 | + self._mm.get_reaction(reaction_id), |
| 151 | + gene_dict.get(reaction_id, ''))) |
| 152 | + |
| 153 | + logger.info('Solving took {:.2f} seconds'.format( |
| 154 | + time.time() - start_time)) |
| 155 | + |
| 156 | + def get_gene_dict(self): |
| 157 | + """Using the reaction file called inside of the model file, it returns |
| 158 | + a dictionary with reaction IDs as keys and their associated |
| 159 | + gene-protein reaction (GPR) logic (i.e. (gene 1 and gene 2) or gene 3) |
| 160 | + as values of type str. |
| 161 | + """ |
| 162 | + gene_dict = {} |
| 163 | + for reaction in self._model.parse_reactions(): |
| 164 | + if reaction.genes is not None: |
| 165 | + gene_dict[reaction.id] = boolean.Expression(reaction.genes) |
| 166 | + |
| 167 | + return gene_dict |
| 168 | + |
| 169 | + |
| 170 | +def make_obj_fun(prob, gene_diff, gene_pval, gene_term_0, gene_term_1): |
| 171 | + """Constructs the MADE objective funtion from dictionaries of LP variables. |
| 172 | +
|
| 173 | + Objective function consists of the summation of three functions dependent |
| 174 | + on the up/down regulation of gene expression between conditions. The |
| 175 | + functions contain a weighting function, and the difference between the |
| 176 | + binary representations of condition 1 and condition 2. |
| 177 | + """ |
| 178 | + i_vars = 0.0 # Increasing gene expression |
| 179 | + d_vars = 0.0 # Decreasing gene expression |
| 180 | + c_vars = 0.0 # Constant gene expression |
| 181 | + |
| 182 | + def weight(p): |
| 183 | + return -math.log10(p) |
| 184 | + |
| 185 | + for gene in gene_pval: |
| 186 | + # Comment by Julie/Matt?: Limitation of math.log() |
| 187 | + wp = max(2.2204460492e-16, gene_pval[gene]) |
| 188 | + |
| 189 | + x_0 = gene_term_0(boolean.Variable(gene)) |
| 190 | + x_1 = gene_term_1(boolean.Variable(gene)) |
| 191 | + # x_delta = x_0 XOR X_1 |
| 192 | + prob.define(('xor', gene), types=lp.VariableType.Binary) |
| 193 | + x_delta = prob.var(('xor', gene)) |
| 194 | + prob.add_linear_constraints( |
| 195 | + x_delta <= x_0 + x_1, |
| 196 | + x_delta >= x_0 - x_1, x_delta >= x_1 - x_0, |
| 197 | + x_delta <= 2 - x_0 - x_1) |
| 198 | + |
| 199 | + if gene_diff[gene] == 1: |
| 200 | + i_vars += weight(wp) * (x_1 - x_0) |
| 201 | + elif gene_diff[gene] == -1: |
| 202 | + d_vars += weight(wp) * (x_0 - x_1) |
| 203 | + elif gene_diff[gene] == 0: |
| 204 | + c_vars += weight(wp) * x_delta |
| 205 | + |
| 206 | + objective = i_vars + d_vars - c_vars |
| 207 | + |
| 208 | + prob.set_objective(objective) |
| 209 | + result = prob.solve(lp.ObjectiveSense.Maximize) |
| 210 | + if not result: |
| 211 | + raise Exception('Unable to solve: ' + result.status) |
| 212 | + |
| 213 | + obj_value = result.get_value(objective) |
| 214 | + logger.info('Objective: {}'.format(obj_value)) |
| 215 | + # prob.add_linear_constraints(objective == obj_value) |
| 216 | + |
| 217 | + return result |
| 218 | + |
| 219 | + |
| 220 | +def create_gpr_constraints(prob, rxn_id, exp, reaction_var, gene_term, |
| 221 | + gene_term_dict): |
| 222 | + """Opens all gene-logic containers, defines content, outputs the linear |
| 223 | + inequalities by calling bool_ineqs(). Sorts data into dictionaries that |
| 224 | + are used in other functions. Is recursive. No output. |
| 225 | +
|
| 226 | + Args: |
| 227 | + exp_obj: All of the expression objects (genes, AND, OR) |
| 228 | + var_gen: Counter used for relabeling the genes and arguments as |
| 229 | + variables |
| 230 | + new_var_id: Variable ID, also includes original reaction ID for first |
| 231 | + layer |
| 232 | + """ |
| 233 | + next_terms = iter([exp.root]) |
| 234 | + current_type = None |
| 235 | + variable = reaction_var |
| 236 | + arguments = [] |
| 237 | + stack = [] |
| 238 | + while True: |
| 239 | + try: |
| 240 | + term = next(next_terms) |
| 241 | + except StopIteration: |
| 242 | + term = None |
| 243 | + |
| 244 | + if term in gene_term_dict: |
| 245 | + arguments.append(gene_term_dict[term]) |
| 246 | + elif isinstance(term, boolean.Variable): |
| 247 | + gene_term.define([term], types=lp.VariableType.Binary) |
| 248 | + term_var = gene_term(term) |
| 249 | + gene_term_dict[term] = term_var |
| 250 | + arguments.append(term_var) |
| 251 | + elif isinstance(term, (boolean.And, boolean.Or)): |
| 252 | + stack.append((current_type, next_terms, variable, arguments)) |
| 253 | + current_type = term.__class__ |
| 254 | + next_terms = iter(term) |
| 255 | + arguments = [] |
| 256 | + gene_term.define([term], types=lp.VariableType.Binary) |
| 257 | + variable = gene_term(term) |
| 258 | + gene_term_dict[term] = variable |
| 259 | + else: |
| 260 | + # End of term |
| 261 | + if current_type is None: |
| 262 | + prob.add_linear_constraints(variable == arguments[0]) |
| 263 | + break |
| 264 | + elif current_type == boolean.And: |
| 265 | + prob.add_linear_constraints( |
| 266 | + *and_constraints(variable, arguments)) |
| 267 | + elif current_type == boolean.Or: |
| 268 | + prob.add_linear_constraints( |
| 269 | + *or_constraints(variable, arguments)) |
| 270 | + |
| 271 | + term_var = variable |
| 272 | + current_type, next_terms, variable, arguments = stack.pop() |
| 273 | + arguments.append(term_var) |
| 274 | + |
| 275 | + |
| 276 | +def and_constraints(var, arguments): |
| 277 | + """Create constraints for boolean AND. |
| 278 | +
|
| 279 | + Creates constraints for: var = And(arguments) where var and each argument |
| 280 | + is a binary variable. |
| 281 | + """ |
| 282 | + var_sum = 0 |
| 283 | + for arg in arguments: |
| 284 | + yield var <= arg |
| 285 | + var_sum += arg |
| 286 | + yield var >= var_sum - (len(arguments) - 1) |
| 287 | + |
| 288 | + |
| 289 | +def or_constraints(var, arguments): |
| 290 | + """Create constraints for boolean OR. |
| 291 | +
|
| 292 | + Creates constraints for: var = Or(arguments) where var and each argument |
| 293 | + is a binary variable. |
| 294 | + """ |
| 295 | + var_sum = 0 |
| 296 | + for arg in arguments: |
| 297 | + yield var >= arg |
| 298 | + var_sum += arg |
| 299 | + yield var <= var_sum |
| 300 | + |
| 301 | + |
| 302 | +def open_file(path): |
| 303 | + """Returns the contents of model file in a tuple of dictionaries. |
| 304 | + File Form: tsv format, FOUR Columns: (1) Gene name, (2) Condition 1 Data, |
| 305 | + (3) Condition 2 Data, (4) P-value of the fold change for transition 1->2. |
| 306 | + """ |
| 307 | + file1 = open(path) |
| 308 | + con1_dict = {} |
| 309 | + con2_dict = {} |
| 310 | + pval_dict = {} |
| 311 | + |
| 312 | + file1.readline() |
| 313 | + for row in csv.reader(file1, delimiter=str('\t')): |
| 314 | + con1_dict[row[0]] = float(row[1]) |
| 315 | + con2_dict[row[0]] = float(row[2]) |
| 316 | + if float(row[3]) == float(0.0): |
| 317 | + pval_dict[row[0]] = 1e-400 |
| 318 | + else: |
| 319 | + pval_dict[row[0]] = float(row[3]) |
| 320 | + |
| 321 | + return con1_dict, con2_dict, pval_dict |
| 322 | + |
| 323 | + |
| 324 | +def idc(dicts): |
| 325 | + """Used for accessing the list of dictionaries created in open_file() |
| 326 | + Creates a dictionary for the gene ID and a value = [-1, 0, +1] |
| 327 | + corresponding to decreasing, constant, and inreasing expression between the |
| 328 | + conditions. |
| 329 | + """ |
| 330 | + con1 = dicts[0] |
| 331 | + con2 = dicts[1] |
| 332 | + pval = dicts[2] |
| 333 | + diff = {} |
| 334 | + |
| 335 | + for key in con1: |
| 336 | + if con2[key] == con1[key]: |
| 337 | + diff[key] = 0 |
| 338 | + elif con2[key] > con1[key]: |
| 339 | + diff[key] = 1 |
| 340 | + else: |
| 341 | + diff[key] = -1 |
| 342 | + |
| 343 | + return con1, con2, pval, diff |
| 344 | + |
| 345 | + |
| 346 | +def add_final_constraints(mm, prob, v, z): |
| 347 | + """Takes the metabolic model, the LP Problem, and the binary |
| 348 | + dictionaries of each condition. Adds constraints connecting flux |
| 349 | + variables, reactions, and their flux bounds. |
| 350 | + """ |
| 351 | + for rxn in mm.reactions: |
| 352 | + vmin = mm.limits[rxn].lower |
| 353 | + vmax = mm.limits[rxn].upper |
| 354 | + flux_var = v(rxn) |
| 355 | + active = z(rxn) |
| 356 | + |
| 357 | + prob.add_linear_constraints( |
| 358 | + active*vmax >= flux_var, flux_var >= active*vmin) |
0 commit comments