-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels_vae.py
762 lines (667 loc) · 33.7 KB
/
models_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_probability import distributions as tfd
from tensorflow_probability import bijectors as tfb
import tensorflow.keras as tfk
import tensorflow.keras.layers as tfkl
import datetime
import os
from copy import deepcopy
from util import *
from dist import *
from flow import *
from network import *
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
class VAE(tf.keras.Model):
"""variational autoencoder, with the option of adding flow."""
def __init__(self, latent_dim, num_flow=0, batch_size=32, K=1, dataset='mnist', architecture='cnn', likelihood_sigma=1.):
super().__init__()
self.latent_dim = latent_dim
self.num_flow = num_flow
self.batch_size = batch_size
self.K = K # K = 1 is original VAE; K > 1 is IWAE
self.pz = tfd.Sample(
tfd.Normal(0., 1.), sample_shape=(latent_dim,))
self.likelihood_sigma = likelihood_sigma # Only used when likelihood is Gaussian
self.dataset = dataset
# Define architectures: self.encoder & self.decoder.
# The final layers should not have activations. Sigmoid, if needed,
# should be included in later compute_loss or other functions.
if self.dataset == 'mnist' or self.dataset == 'mnist_dyn' or self.dataset == 'fashion_mnist':
if architecture == 'cnn':
self.encoder = encoder_cnn_small(self.latent_dim)
self.decoder = decoder_cnn_small(self.latent_dim)
else:
self.encoder = encoder_dense(self.latent_dim)
self.decoder = decoder_dense(self.latent_dim)
elif self.dataset == 'cifar10':
self.encoder = DCGANEncoder(self.latent_dim)
self.decoder = DCGANDecoder(self.latent_dim)
self.flow_model = RealNVP(
self.num_flow,
self.latent_dim)
def sample(self, eps=None, apply_sigmoid=False):
if eps is None:
eps = tf.random.normal(shape=(100, self.latent_dim))
return self.decode(eps, apply_sigmoid=apply_sigmoid)
def encode(self, x):
mean, logvar = tf.split(self.encoder(x), num_or_size_splits=2, axis=1)
return mean, logvar
def reparameterize(self, mean, logvar):
eps = tf.random.normal(shape=mean.shape)
return eps * tf.exp(logvar * .5) + mean
def decode(self, z, apply_sigmoid=False):
x_dec = self.decoder(z)
if apply_sigmoid:
probs = tf.sigmoid(x_dec)
return probs
return x_dec
def log_joint(self, z):
x_dec = self.decode(z)
if self.dataset == 'mnist' or self.dataset == 'mnist_dyn':
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(
logits=x_dec,
labels=self.x_batch)
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
elif self.dataset == 'fashion_mnist' or self.dataset == 'cifar10':
logpx_z = log_normal_pdf(self.x_batch,
x_dec,
tf.math.log(self.likelihood_sigma**2),
raxis=range(1, len(self.x_batch.shape)))
logpz = self.pz.log_prob(z)
return logpx_z + logpz
def log_var_dist(self, z):
mean, logvar = self.encode(self.x_batch)
z0, logdetinv = self.flow_model.inverse(z)
logqz_x = log_normal_pdf(z0, mean, logvar) + logdetinv
return logqz_x
def compute_loss(self, x):
# Encode
mean, logvar = self.encode(x)
z0 = self.reparameterize(
tf.tile(mean, (self.K, 1)),
tf.tile(logvar, (self.K, 1)))
zt, logdet = self.flow_model(z0)
# Decode
x_dec = self.decode(zt)
# Compute loss
if self.dataset == 'mnist' or self.dataset == 'mnist_dyn':
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(
logits=x_dec,
labels=tf.tile(x, (self.K, 1, 1, 1)))
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
elif self.dataset == 'fashion_mnist' or self.dataset == 'cifar10':
logpx_z = log_normal_pdf(tf.tile(x, (self.K, 1, 1, 1)),
x_dec,
tf.math.log(self.likelihood_sigma**2),
raxis=range(1, len(x.shape)))
logpz = log_normal_pdf(zt, 0., 0.)
logqz_x = -logdet + log_normal_pdf(
z0,
tf.tile(mean, (self.K, 1)),
tf.tile(logvar, (self.K, 1)))
logpx_z = tf.reshape(logpx_z, (self.K, -1))
logpz = tf.reshape(logpz, (self.K, -1))
logqz_x = tf.reshape(logqz_x, (self.K, -1))
# Return the IWAE objective (same as original VAE if K = 0)
loss_across_batches = -tf.math.reduce_logsumexp(logpx_z + logpz - logqz_x, axis=0) + tf.math.log(tf.cast(self.K, tf.float32))
return tf.reduce_mean(loss_across_batches)
def train_step(self, x, optimizer):
with tf.GradientTape() as tape:
loss = self.compute_loss(x)
gradients = tape.gradient(loss, self.trainable_variables)
optimizer.apply_gradients(zip(gradients, self.trainable_variables))
return loss
def train(self, train_dataset, test_dataset, epochs=10, lr=1e-4, load_path=None, load_epoch=1,
test_sample=None, random_vector_for_generation=None, generation=False):
self.write_results_helper('results/vae/')
rp = open(self.file_path + "run_parameters.txt", "w")
rp.write('Latent dimension: ' + str(self.latent_dim) + '\n')
rp.write('Number of flows: ' + str(self.num_flow) + '\n')
rp.write('Number of epochs: ' + str(epochs) + '\n')
rp.write('VI number of samples (K): ' + str(self.K) + '\n')
rp.write('Learning rate: ' + str(lr) + '\n')
rp.write('Batch size: ' + str(self.batch_size) + '\n')
rp.close()
if load_path is not None:
self.encoder.load_weights(load_path + 'encoder/encoder')
self.decoder.load_weights(load_path + 'decoder/decoder')
if self.num_flow > 0:
self.flow_model.load_weights(
load_path + 'flow/flow')
optimizer = tf.keras.optimizers.Adam(lr)
for epoch in range(load_epoch, epochs + 1):
start_time = datetime.datetime.now()
for train_x in train_dataset:
elbo = -self.train_step(train_x, optimizer)
end_time = datetime.datetime.now()
loss = tf.keras.metrics.Mean()
for test_x in test_dataset:
loss(self.compute_loss(test_x))
elbo = -loss.result()
print('Epoch: {}, Test set ELBO: {}, time elapse for current epoch: {}'
.format(epoch, elbo, end_time - start_time))
# Save generated images
if self.dataset == 'cifar10':
colored = True
else:
colored = False
if generation:
generate_images_from_images(self, test_sample,
colored=colored,
path=self.file_path + 'generated-images/epoch-'+str(epoch)+'-from-images.png')
generate_images_from_random(self, self.latent_dim,
random_vector_for_generation,
colored=colored,
path=self.file_path + 'generated-images/epoch-'+str(epoch)+'-from-prior.png')
# Save model
if epoch % 5 == 0 or epoch == epochs:
self.encoder.save_weights(self.file_path + 'encoder/encoder')
self.decoder.save_weights(self.file_path + 'decoder/decoder')
self.flow_model.save_weights(self.file_path +'flow/flow')
def write_results_helper(self, folder):
# Save directory
tm = str(datetime.datetime.now())
tm_str = tm[:10]+'-'+tm[11:13]+tm[14:16]+tm[17:19]
path = folder + tm_str + '/'
self.file_path = path
if not os.path.exists(path):
os.makedirs(path)
os.makedirs(path+'generated-images/')
os.makedirs(path+'hmc-points/')
os.makedirs(path+'encoder/')
os.makedirs(path+'decoder/')
os.makedirs(path+'flow/')
self.tm_str = tm_str
class VAE_HSC(VAE):
"""
Variational autoencoder using Hamiltonian score climbing.
It includes:
* MSC (space='original')
* HSC (space='warped' or 'eps')
* CIS-MSC (space='original' and cis > 0)
"""
def __init__(self, latent_dim, num_flow=5, space='original', dataset='mnist',
architecture='cnn', likelihood_sigma=1., cis=0, num_samp=1, chains=1, hmc_e=0.25, hmc_L=4, hmc_L_cap=4,
q_factor=1., batch_size=32, train_size=60000, target_accept=0.67,
hmc_e_differs=False, reinitialize_from_q=False, shear=True):
super().__init__(latent_dim, num_flow=num_flow, batch_size=batch_size,
K=1, dataset=dataset, architecture=architecture, likelihood_sigma=likelihood_sigma)
self.space = space
self.cis = cis
self.num_samp = num_samp
self.chains = chains
self.hmc_e_differs = hmc_e_differs
self.hmc_e = hmc_e
self.hmc_L = hmc_L # self.hmc_L = min(max(int(1 / hmc_e), 1), 25)
self.hmc_L_cap = hmc_L_cap
self.target_accept = target_accept
self.q_factor = q_factor
self.q_factor_variable = self.q_factor < 0
self.train_size = train_size
self.shear = shear
self.reinitialize_from_q = reinitialize_from_q
self.pz = tfd.Sample(
tfd.Normal(0., 1.), sample_shape=(latent_dim,))
self.get_shearing_param(shear)
self.hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=self.log_hmc_target,
step_size=np.float32(self.hmc_e),
num_leapfrog_steps=self.hmc_L,
step_size_update_fn=None,
state_gradients_are_stopped=True)
self.hmc_points = self.pz.sample(self.chains*self.train_size).numpy()
self.is_accepted_all_epochs = []
self.is_accepted = [1.]
self.epoch = 999
def sample(self, eps=None, apply_sigmoid=False):
if eps is None:
eps = tf.random.normal(shape=(100, self.latent_dim))
return self.decode(eps, apply_sigmoid=apply_sigmoid)
def encode(self, x):
mean, logvar = tf.split(self.encoder(x), num_or_size_splits=2, axis=1)
return mean, logvar
def reparameterize(self, mean, logvar):
eps = tf.random.normal(shape=mean.shape)
return eps * tf.exp(logvar * .5) + mean
def decode(self, z, apply_sigmoid=False):
A = self.get_shearing_matrix()
z = tf.matmul(z, tf.transpose(A))
logits = self.decoder(z)
if apply_sigmoid:
probs = tf.sigmoid(logits)
return probs
return logits
def get_shearing_param(self, shear=False):
l = tf.cast((self.latent_dim+1)*self.latent_dim/2, tf.int32)
self.lower_tri = tfp.math.fill_triangular(
tf.ones(l))
self.shearing_param = tf.Variable(
tf.zeros((self.latent_dim, self.latent_dim)) + 0.1,
dtype=tf.float32,
name='shear')
return
def get_shearing_matrix(self):
if self.shear:
return tf.linalg.set_diag(
tf.multiply(self.lower_tri, self.shearing_param), [1]*self.latent_dim)
else:
return tf.eye(self.latent_dim)
def log_joint(self, z):
x_dec = self.decode(z)
if self.dataset == 'mnist' or self.dataset == 'mnist_dyn':
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(
logits=x_dec,
labels=tf.tile(self.x_batch, (self.chains, 1, 1, 1)))
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
elif self.dataset == 'fashion_mnist' or self.dataset == 'cifar10':
logpx_z = log_normal_pdf(tf.tile(self.x_batch, (self.chains, 1, 1, 1)),
x_dec,
tf.math.log(self.likelihood_sigma**2),
raxis=range(1, len(self.x_batch.shape)))
logpz = self.pz.log_prob(z)
return logpx_z + logpz
def log_var_dist(self, z):
mean, logvar = self.encode(self.x_batch)
z0, logdetinv = self.flow_model.inverse(z)
logqz_x = logdetinv + log_normal_pdf(
z0, tf.tile(mean, (self.chains, 1)), tf.tile(logvar, (self.chains, 1)))
return logqz_x
def log_hmc_target(self, z0):
# For warped space: unnormalized density of p(z0 | x)
# For original space: unnormalized density of p(zt | x)
logdetjac = 0.
if self.space == 'warped' or self.space == 'eps':
z0 = self.mean + tf.multiply(z0, tf.exp(self.logvar / 2))
logdetjac = logdetjac + tf.reduce_sum(self.logvar / 2, axis=1)
zt, flow_logdet = self.flow_model(z0)
else:
zt = z0
flow_logdet = 0.
x_dec = self.decode(zt)
if self.dataset == 'mnist' or self.dataset == 'mnist_dyn':
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(
logits=x_dec,
labels=tf.tile(self.x_batch, (self.chains, 1, 1, 1)))
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
elif self.dataset == 'fashion_mnist' or self.dataset == 'cifar10':
logpx_z = log_normal_pdf(tf.tile(self.x_batch, (self.chains, 1, 1, 1)),
x_dec,
tf.math.log(self.likelihood_sigma**2),
raxis=range(1, len(self.x_batch.shape)))
logpz = self.pz.log_prob(zt)
logdetjac = logdetjac + flow_logdet
return logpx_z + logpz + logdetjac
def reset_hmc_kernel(self):
smallest_accept = np.min(self.is_accepted)
average_accept = np.mean(self.is_accepted)
if smallest_accept < 0.25 or average_accept < self.target_accept:
self.hmc_e = self.hmc_e * 0.995
else:
self.hmc_e = min(self.hmc_e * 1.005, 1.)
self.hmc_L = min(int(1 / self.hmc_e)+1, self.hmc_L_cap)
if self.hmc_e_differs:
self.hmc_e_M = tf.exp(self.logvar / 2) * self.hmc_e
self.hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=self.log_hmc_target,
step_size=np.float32(self.hmc_e_M),
num_leapfrog_steps=self.hmc_L,
state_gradients_are_stopped=True)
else:
self.hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=self.log_hmc_target,
step_size=np.float32(self.hmc_e),
num_leapfrog_steps=self.hmc_L,
state_gradients_are_stopped=True)
def get_current_state(self, idx):
# Return the current state for HMC to sample
if self.space == 'warped' or self.space == 'eps':
if self.reinitialize_from_q:
return tf.stop_gradient(
(self.z0_from_q - self.mean) / tf.exp(self.logvar / 2))
else:
if self.epoch == 1:
return tf.stop_gradient(
(self.z0_from_q - self.mean) / tf.exp(self.logvar / 2))
else:
zt_from_current_state = self.hmc_points[idx:(idx+self.batch_size*self.chains), :]
z0, _ = self.flow_model.inverse(zt_from_current_state)
return tf.stop_gradient(
(z0 - self.mean) / tf.exp(self.logvar / 2))
else:
if self.reinitialize_from_q:
zt, _ = self.flow_model(self.z0_from_q)
return zt
else:
if self.epoch == 1:
zt, _ = self.flow_model(self.z0_from_q)
return zt
else:
zt = self.hmc_points[idx:(idx+self.batch_size*self.chains), :]
return zt
def modify_current_state(self, idx, zt):
# Record zt to use as 'current state' for HMC sampling in the next epoch
if idx / self.chains + self.batch_size >= self.train_size:
self.hmc_points[idx:, :] = zt.numpy()
else:
self.hmc_points[idx:(idx+self.batch_size*self.chains), :] = zt.numpy()
def get_loss_q_from_q_sample(self, x):
# Only used in NeutraHMC main training phase
z0_from_q = self.reparameterize(
self.mean,
self.logvar)
zt_from_q, logdet_from_q = self.flow_model(z0_from_q)
x_dec_from_q = self.decode(zt_from_q)
if self.dataset == 'mnist' or self.dataset == 'mnist_dyn':
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(
logits=x_dec_from_q,
labels=x)
logpx_z_from_q = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
elif self.dataset == 'fashion_mnist' or self.dataset == 'cifar10':
logpx_z_from_q = log_normal_pdf(x,
x_dec_from_q,
tf.math.log(self.likelihood_sigma**2),
raxis=range(1, len(x.shape)))
logpz_from_q = log_normal_pdf(zt_from_q, 0., 0.)
logqz_x_from_q = log_normal_pdf(
z0_from_q, self.mean, self.logvar) - logdet_from_q
loss_q = -tf.reduce_mean(logpx_z_from_q + logpz_from_q - logqz_x_from_q)
return loss_q
def compute_loss(self, x, idx):
if self.cis == 0 or self.epoch == 1:
mean, logvar = self.encode(x)
self.mean = tf.tile(mean, (self.chains, 1))
self.logvar = tf.tile(logvar, (self.chains, 1))
self.z0_from_q = tf.stop_gradient(
self.reparameterize(self.mean, self.logvar))
self.x_batch = x
self.current_state_batch = tf.squeeze(self.get_current_state(idx)) # batch_size by latent_dim
# Get latents from HMC
if self.cis == 0:
self.reset_hmc_kernel()
out = tfp.mcmc.sample_chain(
self.num_samp, self.current_state_batch,
previous_kernel_results=None, kernel=self.hmc_kernel,
num_burnin_steps=0, num_steps_between_results=0,
trace_fn=(lambda current_state, kernel_results: kernel_results.is_accepted),
return_final_kernel_results=False, seed=None, name=None)
kernel_results = out[1]
z0 = tf.gather(out[0], self.num_samp-1)
self.is_accepted = np.mean(np.squeeze(kernel_results.numpy()), axis=0)
self.is_accepted_all_epochs.append(np.mean(self.is_accepted))
if self.space == 'warped' or self.space == 'eps':
z0 = self.mean + tf.multiply(z0, tf.exp(self.logvar / 2))
z0 = tf.stop_gradient(z0)
zt, _ = self.flow_model(z0)
zt = tf.stop_gradient(zt)
else:
zt = tf.stop_gradient(z0)
# Get latents from CIS-kernel MSC
else:
S = self.cis
# Get mean, logvar from encoder
self.mean, self.logvar = self.encode(x)
# Get z for 2, 3, ..., S
mean_Sm1 = tf.tile(self.mean, (S-1, 1))
logvar_Sm1 = tf.tile(self.logvar, (S-1, 1))
z0_Sm1 = tf.stop_gradient(
self.reparameterize(mean_Sm1, logvar_Sm1))
z0, logdetinv = self.flow_model.inverse(self.current_state_batch)
z0_S = tf.concat([z0, z0_Sm1], axis=0)
zt_Sm1, logdet_Sm1 = self.flow_model(z0_Sm1)
# Concatenate z_Sm1 with z_k-1
zt_S = tf.concat([self.current_state_batch, zt_Sm1], axis=0)
logdet = tf.concat([-logdetinv, logdet_Sm1], axis=0)
# Compute w as an S times batch_size-long vector
x_dec = self.decode(zt_S)
if self.dataset == 'mnist' or self.dataset == 'mnist_dyn':
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(
logits=x_dec,
labels=tf.tile(x, (S, 1, 1, 1)))
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
elif self.dataset == 'fashion_mnist' or self.dataset == 'cifar10':
logpx_z = log_normal_pdf(tf.tile(x, (S, 1, 1, 1)),
x_dec,
tf.math.log(self.likelihood_sigma**2),
raxis=range(1, len(x.shape)))
logpz = log_normal_pdf(zt_S, 0., 0.)
logqz_x = -logdet + log_normal_pdf(
z0_S,
tf.tile(self.mean, (S, 1)),
tf.tile(self.logvar, (S, 1)))
log_w = logpx_z + logpz - logqz_x
# Reshape w into (batch_size, S)
log_w = tf.transpose(tf.reshape(log_w, (S, -1)))
# Sample from categorical (J is batch_size-long vector)
J = tf.squeeze(tf.random.categorical(log_w, 1))
# Set z[k], or z of this iteration
zt_S = tf.reshape(zt_S, (S, -1, self.latent_dim))
indices = tf.stack([J, tf.range(J.shape[0], dtype=tf.int64)], axis=0)
indices = tf.transpose(indices)
zt = tf.gather_nd(zt_S, indices)
zt = tf.stop_gradient(zt)
self.is_accepted_all_epochs = [1.] # trivial
self.modify_current_state(idx, zt)
z0, _ = self.flow_model.inverse(zt)
_, logdet = self.flow_model(z0)
x_dec = self.decode(zt)
if self.dataset == 'mnist' or self.dataset == 'mnist_dyn':
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(
logits=x_dec,
labels=tf.tile(x, (self.chains, 1, 1, 1)))
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
elif self.dataset == 'fashion_mnist' or self.dataset == 'cifar10':
logpx_z = log_normal_pdf(
tf.tile(x, (self.chains, 1, 1, 1)),
x_dec,
tf.math.log(self.likelihood_sigma**2),
raxis=range(1, len(x.shape)))
logqz_x = log_normal_pdf(z0, self.mean, self.logvar) - logdet
loss_p = -tf.reduce_mean(logpx_z)
if not self.reinitialize_from_q:
loss_q = -tf.reduce_mean(logqz_x)
else:
loss_q = self.get_loss_q_from_q_sample(x)
print('loss_p', np.round(loss_p.numpy(), 3), 'loss_q', np.round(loss_q.numpy(), 3))
return loss_p, loss_q
def warm_up_compute_loss(self, x):
mean, logvar = self.encode(x)
z0 = self.reparameterize(mean, logvar)
zt, logdet = self.flow_model(z0)
x_dec = self.decode(zt)
if self.dataset == 'mnist' or self.dataset == 'mnist_dyn':
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(
logits=x_dec,
labels=x)
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
elif self.dataset == 'fashion_mnist' or self.dataset == 'cifar10':
logpx_z = log_normal_pdf(
x,
x_dec,
tf.math.log(self.likelihood_sigma**2),
raxis=range(1, len(x.shape)))
logpz = log_normal_pdf(zt, 0., 0.)
logqz_x = log_normal_pdf(z0, mean, logvar) - logdet
return -tf.reduce_mean(logpx_z + logpz - logqz_x)
def train_step(self, x, optimizer_p, optimizer_q, idx):
with tf.GradientTape(persistent=True) as tape:
loss_p, loss_q = self.compute_loss(x, idx)
grads_p = tape.gradient(loss_p, self.decoder.trainable_variables)
optimizer_p.apply_gradients(zip(grads_p, self.decoder.trainable_variables))
if self.training_encoder:
grads_q = tape.gradient(loss_q, self.encoder.trainable_variables + self.flow_model.trainable_variables + [self.shearing_param])
optimizer_q.apply_gradients(zip(grads_q, self.encoder.trainable_variables + self.flow_model.trainable_variables + [self.shearing_param]))
loss = loss_p + loss_q
del tape
return loss
def warm_up_train_step(self, x, optimizer):
with tf.GradientTape() as tape:
loss = self.warm_up_compute_loss(x)
gradients = tape.gradient(loss, self.trainable_variables)
optimizer.apply_gradients(zip(gradients, self.trainable_variables))
return loss
def train(self, train_dataset, test_dataset, epochs=10, lr=1e-4, stop_idx=60000,
warm_up=False, train_encoder=True, q_not_train=0, load_path=None, load_epoch=1,
test_sample=None, random_vector_for_generation=None, generation=False):
self.write_results_helper('results/vae_hsc/')
rp = open(self.file_path + "run_parameters.txt", "w")
rp.write('Latent dimension: ' + str(self.latent_dim) + '\n')
rp.write('Number of flows: ' + str(self.num_flow) + '\n')
rp.write('Space: ' + self.space + '\n')
rp.write('Number of epochs: ' + str(epochs) + '\n')
rp.write('Learning rate: ' + str(lr) + '\n')
rp.write('Batch size: ' + str(self.batch_size) + '\n')
if self.cis != 0:
rp.write('CIS samples: ' + str(self.cis) + '\n')
rp.write('q factor: ' + str(self.q_factor) + '\n')
rp.write('HMC number of samples: ' + str(self.num_samp) + '\n')
rp.write('HMC number of chains: ' + str(self.chains) + '\n')
rp.write('HMC step size: ' + str(self.hmc_e) + '\n')
rp.write('HMC number of leapfrog steps: ' + str(self.hmc_L) + '\n')
rp.write('Use shearing: ' + str(self.shear) + '\n')
rp.write('Warm up with ELBO training: ' + str(warm_up) + '\n')
rp.write('Reinitialize HMC from q (in every epoch): ' + str(self.reinitialize_from_q) + '\n')
if not train_encoder:
rp.write('Not training encoder during HSC')
else:
rp.write('q does not train for: ' + str(q_not_train))
rp.close()
# Training
decay_change = (int(self.train_size/self.batch_size) + 1) * 400
lr_schedule = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
[decay_change], [lr, lr / 10])
lr_schedule_q = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
[decay_change], [lr * self.q_factor, lr * self.q_factor / 10])
optimizer = tf.keras.optimizers.Adam(lr_schedule)
optimizer_q = tf.keras.optimizers.Adam(lr_schedule_q)
hmc_zt = None
losses = []
self.decoder.save_weights(self.file_path + 'models/init_decoder/decoder')
self.training_encoder = train_encoder
reinitialize_from_q_setup = self.reinitialize_from_q
# Load a pretrained encoder (and continue to train it). Meanwhile we want to train a decoder from scratch.
if load_path is not None and load_epoch == 1:
self.encoder.load_weights(load_path + 'warmed_up_encoder/encoder')
if os.path.exists(load_path + 'warmed_up_decoder/'):
self.decoder.load_weights(load_path + 'warmed_up_decoder/decoder')
if self.num_flow > 0:
self.flow_model.load_weights(load_path + 'warmed_up_flow/flow')
if self.shear:
self.shearing_param = tf.Variable(
np.genfromtxt(load_path + 'shearing_param.csv'),
dtype=tf.float32,
name='shear')
# Load a trained model and continue to train it. Epoch number adds cumulatively.
elif load_path is not None:
self.encoder.load_weights(load_path + 'models/epoch_' + str(load_epoch-1) + '_encoder/encoder')
self.decoder.load_weights(load_path + 'models/epoch_' + str(load_epoch-1) + '_decoder/decoder')
if self.num_flow > 0:
self.flow_model.load_weights(
load_path + 'models/epoch_' + str(load_epoch-1) + '_flow/flow')
if self.shear:
self.shearing_param = tf.Variable(
np.genfromtxt(
load_path + 'models/epoch_' + str(load_epoch-1) + '_shearing_param/shearing_param.csv',
dtype='float32'),
dtype=tf.float32,
name='shear')
self.hmc_points = np.genfromtxt(load_path + 'hmc-points/hmc_points.csv', dtype='float32')
# If we don't load, we do a warm-up and use the warmed-up encoder for NeutraHMC
if warm_up and load_path is None:
os.makedirs('pretrained/' + str(self.latent_dim) + '/' + self.tm_str + '/warmed_up_encoder/')
os.makedirs('pretrained/' + str(self.latent_dim) + '/' + self.tm_str + '/warmed_up_flow/')
if self.num_flow > 0:
warm_up_epochs = 500
else:
warm_up_epochs = 20
for epoch in range(1, warm_up_epochs + 1):
print('-- Epoch (warm up) {} --'.format(epoch))
for train_x in train_dataset:
loss = self.warm_up_train_step(train_x, optimizer)
print('ELBO', round(-loss.numpy(), 3))
# Save generated images
if generation:
generate_images_from_images(self, test_sample,
path=self.file_path + 'generated-images/pre-epoch-'+str(epoch)+'-from-images.png')
generate_images_from_random(self, self.latent_dim,
random_vector_for_generation,
path=self.file_path + 'generated-images/pre-epoch-'+str(epoch)+'-from-prior.png')
# Save model
self.encoder.save_weights(
'pretrained/' + str(self.latent_dim) + '/' + self.tm_str + '/warmed_up_encoder/encoder')
# self.decoder.save_weights(
# 'pretrained/' + str(self.latent_dim) + '/' + self.tm_str + '/warmed_up_decoder/decoder')
self.flow_model.save_weights(
'pretrained/' + str(self.latent_dim) + '/' + self.tm_str + '/warmed_up_flow/flow')
np.savetxt('pretrained/' + str(self.latent_dim) + '/' + self.tm_str + '/shearing_param.csv', self.shearing_param.numpy())
# End of warm up, we reload the initial decoder and be ready to start training
self.decoder.load_weights(self.file_path + 'models/init_decoder/decoder')
# Main section
for epoch in range(load_epoch, epochs + 1):
print('-- Epoch {} --'.format(epoch))
idx = 0
self.epoch = epoch
# Decide whether the encoder should be trainable:
if epoch <= q_not_train:
self.encoder.trainable = False
self.flow_model.trainable = False
self.training_encoder = False
else:
self.encoder.trainable = train_encoder
self.flow_model.trainable = train_encoder
self.training_encoder = train_encoder
# Training:
for train_x in train_dataset:
# We stop if we only want to train with stop_idx many data points:
if idx >= stop_idx * self.chains:
break
# Run a training step:
start_time = datetime.datetime.now()
loss = self.train_step(train_x, optimizer, optimizer_q, idx)
# Update idx to record current_state for the next HMC step:
idx += self.batch_size * self.chains
losses.append(loss.numpy())
end_time = datetime.datetime.now()
if idx % (self.batch_size*1) == 0:
print('Loss', round(loss.numpy(), 3),
'accept rate (avg)', round(self.is_accepted_all_epochs[-1], 3),
'step size', np.round(self.hmc_e, 3),
'time', end_time-start_time,
'idx', idx)
# print('Loss p', round(self.loss_p.numpy(), 3), 'Loss q', round(self.loss_q.numpy(), 3))
# Save generated images
if self.dataset == 'cifar10':
colored = True
else:
colored = False
if generation:
generate_images_from_images(self, test_sample,
colored=colored,
path=self.file_path + 'generated-images/epoch-'+str(epoch)+'-from-images.png')
generate_images_from_random(self, self.latent_dim,
random_vector_for_generation,
colored=colored,
path=self.file_path + 'generated-images/epoch-'+str(epoch)+'-from-prior.png')
# Save model
if epoch % 10 == 0 or epoch == epochs:
os.makedirs(self.file_path+'models/epoch_' + str(epoch) + '_encoder/')
os.makedirs(self.file_path+'models/epoch_' + str(epoch) + '_decoder/')
os.makedirs(self.file_path+'models/epoch_' + str(epoch) + '_shearing_param/')
self.encoder.save_weights(self.file_path+'models/epoch_' + str(epoch) + '_encoder/encoder')
self.decoder.save_weights(self.file_path+'models/epoch_' + str(epoch) + '_decoder/decoder')
np.savetxt(
self.file_path+'models/epoch_' + str(epoch) + '_shearing_param/shearing_param.csv', self.shearing_param)
os.makedirs(self.file_path+'models/epoch_' + str(epoch) + '_flow/')
self.flow_model.save_weights(
self.file_path+'models/epoch_' + str(epoch) + '_flow/flow')
# np.savetxt(self.file_path + 'hmc_acceptance.csv', np.squeeze(self.is_accepted_list))
np.savetxt(self.file_path + 'hmc-points/hmc_points.csv', np.squeeze(self.hmc_points))
np.savetxt(self.file_path + 'losses.csv', np.array(losses))
# Plot HMC points
# if self.latent_dim == 2 and generation:
# if epoch == start_epoch:
# old_points = None
# old_points = plot_hmc_points(self.hmc_points[[0,1000,1999],:], old_points,
# path=self.file_path + 'hmc-points/epoch-'+str(epoch)+'.png')
return