-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
787 lines (689 loc) · 34.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_probability import distributions as tfd
from tensorflow_probability import bijectors as tfb
import tensorflow.keras as tfk
import tensorflow.keras.layers as tfkl
import datetime
import os
import pickle
from util import *
from dist import *
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
class VI_KLqp:
def __init__(self, dataset='funnel', v_fam='gaussian', num_dims=2,
num_samp=1, batch_size=5000, train_size=5000,
loc_init=[2.,5.], scale_init=[1.,1.]):
self.v_fam = v_fam.lower()
self.dataset = dataset.lower()
self.num_dims = num_dims
self.num_samp = num_samp
self.batch_size = batch_size
self.train_size = train_size
if self.dataset == 'funnel' or self.dataset == 'banana':
self.num_dims = num_dims
self.loc_init = tf.zeros(self.num_dims)
self.scale_init = tf.ones(self.num_dims)
elif self.dataset == 'survey':
self.num_dims = 123
self.loc_init = tf.zeros(self.num_dims)
self.scale_init = tf.ones(self.num_dims)/3
self.likelihood = self.define_likelihood()
self.prior = self.define_prior()
self.define_var_dist()
if self.dataset == 'funnel' or self.dataset == 'banana':
self.trainable_var = self.q.trainable_variables
elif self.dataset == 'survey':
self.trainable_var = []
self.trainable_var.extend(self.q.trainable_variables)
self.trainable_var.extend([self.gamma_0,
self.gamma,
self.sigma])
def define_var_dist(self):
self.base_distribution = tfd.Sample(
tfd.Normal(0., 1.), sample_shape=[self.num_dims])
if self.v_fam == 'iaf' or self.v_fam == 'flow':
self.p_weight = 1
self.made = tfb.AutoregressiveNetwork(
params=2,
hidden_units=[self.num_dims*5, self.num_dims*5],
event_shape=(self.num_dims,),
activation='elu',
kernel_initializer=tfk.initializers.GlorotNormal())
self.make_model()
elif self.v_fam == 'gaussian':
self.p_weight = 1
self.phi_m = tf.Variable(
self.loc_init,
name='phi_m')
self.phi_s = tfp.util.TransformedVariable(
self.scale_init,
tfb.Softplus(),
name='phi_s')
self.q = tfd.MultivariateNormalDiag(
loc=self.phi_m,
scale_diag=self.phi_s)
def define_likelihood(self):
if self.dataset == 'funnel':
return Funnel().get_dist()
elif self.dataset == 'banana':
return Banana().get_dist()
elif self.dataset == 'survey':
self.x = tf.zeros((self.batch_size, 128)) # A placeholder to become data
self.gamma_0 = tf.Variable(0., dtype=tf.float32, name='gamma_0')
self.gamma = tf.Variable(tf.zeros(5), name='gamma')
return self.survey_likelihood_lpdf
def define_prior(self):
if self.dataset == 'funnel' or self.dataset == 'banana':
return None
elif self.dataset == 'survey':
self.sigma = tf.Variable(
tf.zeros(7),
name='sigma')
return self.survey_prior_lpdf
def survey_likelihood_lpdf(self, alpha):
splitted_x = tf.split(self.x, [123, 5], axis=1)
term1 = tf.matmul(splitted_x[0], tf.transpose(alpha)) # has shape (batch_size, chains)
term2 = self.gamma_0 # is scaler
term3 = tf.matmul(splitted_x[1], tf.reshape(self.gamma, (5, 1))) # has shape (batch_size, 1)
logits = term1 + term2 + term3 # has shape (batch_size, chains)
likelihoods = -tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits,
labels=tf.tile(tf.expand_dims(self.y, axis=1), [1, self.num_samp]))
return tf.reduce_sum(likelihoods, axis=0)
def survey_prior_lpdf(self, alpha):
# alpha must be chains-by-123
splitted_alpha = tf.split(alpha, [50, 6, 4, 5, 8, 30, 20], axis=1)
prior_lpdf = 0.
for i in range(7):
priors = log_normal_pdf(
splitted_alpha[i],
0.,
tf.gather(self.sigma, i))
prior_lpdf = prior_lpdf + priors
return prior_lpdf
def make_model(self):
x_in = tfkl.Input(shape=(self.num_dims,), dtype=tf.float32) # eps
x_ = self.made(x_in)
self.model = tfk.Model(x_in, x_)
self.bij = tfb.Invert(tfb.MaskedAutoregressiveFlow(self.model))
self.q = tfd.TransformedDistribution(
self.base_distribution,
self.bij)
def load_model(self, path):
self.model.load_weights(path)
self.bij = tfb.Invert(tfb.MaskedAutoregressiveFlow(self.model))
self.q = tfd.TransformedDistribution(
self.base_distribution,
self.bij)
def kl_loss(self):
eps = self.base_distribution.sample(self.num_samp)
if self.v_fam == 'flow' or self.v_fam == 'iaf':
logqz_x = tf.reduce_mean(log_normal_pdf(eps, 0., 0.) - self.bij.forward_log_det_jacobian(eps, 1))
z = self.bij.forward(eps)
elif self.v_fam == 'gaussian':
z = self.phi_m + self.phi_s * eps
logqz_x = tf.reduce_mean(log_normal_pdf(z, self.phi_m, 2 * tf.math.log(self.phi_s)))
if self.dataset == 'funnel' or self.dataset == 'banana':
loss = tf.reduce_mean(logqz_x -
self.likelihood.log_prob(z))
elif self.dataset == 'survey':
loss = tf.reduce_mean(logqz_x -
self.likelihood(z) - self.prior(z))
return loss
def record_data(self, lst):
if self.dataset == 'funnel' or self.dataset == 'banana':
if self.v_fam == 'gaussian':
lst[0].append(self.phi_m.numpy())
lst[1].append(self.phi_s.numpy())
elif self.dataset == 'survey':
if self.v_fam == 'gaussian':
lst[0].append(self.phi_m.numpy())
lst[1].append(self.phi_s.numpy())
lst[2].append(self.gamma_0.numpy())
lst[3].append(self.gamma.numpy())
lst[4].append(self.sigma.numpy())
elif self.v_fam == 'iaf' or self.v_fam == 'flow':
lst[2].append(self.gamma_0.numpy())
lst[3].append(self.gamma.numpy())
lst[4].append(self.sigma.numpy())
return lst
def train(self, epochs=int(1e5), lr=0.001, decay_rate=0.001, save=True, path=None):
lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay(lr, 1, decay_rate)
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
phi_m = []
phi_s = []
gamma_0 = []
gamma = []
sigma = []
params = [phi_m, phi_s, gamma_0, gamma, sigma]
params_savenames = ['phi_m.csv', 'phi_s.csv', 'gamma_0.csv', 'gamma.csv', 'sigma.csv']
elbo = []
posterior_stds = []
if save:
tm = str(datetime.datetime.now())
tm_str = tm[:10]+'-'+tm[11:13]+tm[14:16]+tm[17:19]
if path is None:
path = 'results/' + self.dataset + '/' + 'vi_klqp_' + self.v_fam + '/' + tm_str + '/'
else:
path += self.dataset + '/' + 'vi_klqp_' + self.v_fam + '/' + tm_str + '/'
if not os.path.exists(path):
os.makedirs(path)
for epoch in range(1, epochs + 1):
params = self.record_data(params)
with tf.GradientTape() as tape:
loss_value = self.kl_loss()
elbo.append(-loss_value.numpy())
grads = tape.gradient(loss_value, self.trainable_var)
optimizer.apply_gradients(zip(grads, self.trainable_var))
if epoch % 50 == 0 or epoch == 1:
if self.dataset == 'funnel' or self.dataset == 'banana':
if self.v_fam == 'iaf' or self.v_fam == 'flow':
print('Epoch', epoch,
'Loss', loss_value.numpy())
elif self.v_fam == 'gaussian':
print('Epoch', epoch,
'Loss', np.round(loss_value.numpy(),3),
'phi_s', np.round(self.phi_s.numpy(),3))
elif self.dataset == 'survey':
if self.v_fam == 'iaf' or self.v_fam == 'flow':
print('Epoch', epoch,
'Loss', loss_value.numpy(),
'gamma', np.round(self.gamma.numpy(),3),)
elif self.v_fam == 'gaussian':
print('Epoch', epoch,
'Loss', np.round(loss_value.numpy(),3),
'gamma', np.round(self.gamma.numpy(),3),
'phi_s', np.round(np.mean(self.phi_s.numpy()),3))
if epoch % 100 == 0:
# Monitor convergence for flow-based distributions:
if self.v_fam == 'iaf' or self.v_fam == 'flow':
iaf_qp_samp = self.q.sample(int(1e6))
s = tf.math.reduce_std(iaf_qp_samp, axis=0).numpy()
m = tf.reduce_mean(iaf_qp_samp, axis=0).numpy()
posterior_stds.append(s)
if epochs - epoch < 100:
i = epochs - epoch
if self.v_fam == 'iaf' or self.v_fam == 'flow':
self.model.save_weights(path + 'models/model{}/model'.format(i))
if epoch == epochs:
model_agg = combine_nn_params(self.model, path, 100)
model_agg.save_weights(path + 'models/model_agg/model')
if (epoch % 10000 == 0 or epoch == 1) and save:
np.savetxt(path+'elbo.csv', np.array(elbo))
if self.v_fam == 'iaf' or self.v_fam == 'flow':
self.model.save_weights(path + 'models/model/model')
np.savetxt(path+'posterior_stds.csv', np.array(posterior_stds))
for i in range(len(params)):
if len(params[i]) != 0:
np.savetxt(path + params_savenames[i], np.array(params[i]))
if epoch == 1:
rp = open(path + "run_parameters.txt", "w")
rp.write('dataset: ' + str(self.dataset) + '\n')
rp.write('variational family: ' + self.v_fam + '\n')
rp.write('number of samples: ' + str(self.num_samp) + '\n')
rp.write('epochs: ' + str(epochs) + '\n')
rp.write('learning rate: ' + str(lr) + '\n')
rp.write('decay rate: ' + str(decay_rate) + '\n')
rp.close()
class VI_KLpq:
def __init__(self, dataset='funnel', v_fam='gaussian', space='eps', num_dims=2,
num_samp=1, chains=1, hmc_e=0.25, hmc_L=4,
batch_size=5000, train_size=5000,
pt_init=tf.constant([[2,10]], dtype=tf.float32),
loc_init=[2.,5.], scale_init=[1.,1.]):
self.space = space.lower()
self.v_fam = v_fam.lower()
self.dataset = dataset.lower()
if self.dataset == 'funnel' or self.dataset == 'banana':
self.num_dims = num_dims
# self.pt_init = tf.tile(pt_init, [chains, 1])
# self.loc_init = loc_init
# self.scale_init = scale_init
self.pt_init = tfd.Sample(tfd.Normal(0,1), self.num_dims).sample(chains)
self.loc_init = tf.zeros(self.num_dims)
self.scale_init = tf.ones(self.num_dims)
elif self.dataset == 'survey':
self.num_dims = 123
self.pt_init = tfd.Sample(tfd.Normal(0,1), self.num_dims).sample(chains)
self.loc_init = tf.zeros(self.num_dims)
self.scale_init = tf.ones(self.num_dims)/3
self.hmc_e = hmc_e
self.hmc_L = hmc_L
self.batch_size = batch_size
self.train_size = train_size
self.chains = chains
self.num_samp = num_samp
self.likelihood = self.define_likelihood()
self.prior = self.define_prior()
self.define_var_dist()
self.log_hmc_target = self.define_log_hmc_target()
self.hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=self.log_hmc_target,
step_size=np.float32(self.hmc_e),
num_leapfrog_steps=self.hmc_L,
state_gradients_are_stopped=True)
if self.dataset == 'funnel' or self.dataset == 'banana':
self.trainable_var = self.q.trainable_variables
elif self.dataset == 'survey':
self.trainable_var_q = list(self.q.trainable_variables)
self.trainable_var_p = [self.gamma_0,
self.gamma,
self.sigma]
self.trainable_var = self.trainable_var_q + self.trainable_var_p
def define_var_dist(self):
if self.v_fam == 'iaf' or self.v_fam == 'flow':
self.base_distribution = tfd.Sample(
tfd.Normal(0., 1.), sample_shape=[self.num_dims])
self.made = tfb.AutoregressiveNetwork(
params=2,
hidden_units=[self.num_dims*5, self.num_dims*5],
event_shape=(self.num_dims,),
activation='elu',
kernel_initializer=tfk.initializers.GlorotNormal())
self.make_model()
elif self.v_fam == 'gaussian':
self.phi_m = tf.Variable(
self.loc_init,
name='phi_m')
self.phi_s = tfp.util.TransformedVariable(
self.scale_init,
tfb.Softplus(),
name='phi_s')
self.q = tfd.MultivariateNormalDiag(
loc=self.phi_m,
scale_diag=self.phi_s)
if self.space == 'eps' or self.space == 'warped':
self.bij = tfb.Affine(
shift=self.phi_m,
scale_diag=self.phi_s)
def define_likelihood(self):
if self.dataset == 'funnel':
return Funnel().get_dist().log_prob
elif self.dataset == 'banana':
return Banana().get_dist().log_prob
elif self.dataset == 'survey':
self.x = tf.zeros((self.batch_size, 128)) # A placeholder to become data
self.gamma_0 = tf.Variable(0., dtype=tf.float32, name='gamma_0')
self.gamma = tf.Variable(tf.zeros(5), name='gamma')
return self.survey_likelihood_lpdf
def define_prior(self):
if self.dataset == 'funnel' or self.dataset == 'banana':
return None
elif self.dataset == 'survey':
self.sigma = tf.Variable(
tf.zeros(7),
name='sigma')
return self.survey_prior_lpdf
def define_log_hmc_target(self):
if self.space == 'eps' or self.space == 'warped':
self.current_state = self.bij.inverse(self.pt_init)
return self.log_hmc_target_warped_space
else:
self.current_state = self.pt_init
return self.log_hmc_target_original_space
def survey_likelihood_lpdf(self, alpha):
splitted_x = tf.split(self.x, [123, 5], axis=1)
term1 = tf.matmul(splitted_x[0], tf.transpose(alpha)) # has shape (batch_size, chains)
term2 = self.gamma_0 # is scaler
term3 = tf.matmul(splitted_x[1], tf.reshape(self.gamma, (5, 1))) # has shape (batch_size, 1)
logits = term1 + term2 + term3 # has shape (batch_size, chains)
likelihoods = -tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits,
labels=tf.tile(tf.expand_dims(self.y, axis=1), [1, self.chains]))
return tf.reduce_sum(likelihoods, axis=0)
def survey_prior_lpdf(self, alpha):
# alpha must be chains-by-123
splitted_alpha = tf.split(alpha, [50, 6, 4, 5, 8, 30, 20], axis=1)
prior_lpdf = 0.
for i in range(7):
priors = log_normal_pdf(
splitted_alpha[i],
0.,
tf.gather(self.sigma, i))
prior_lpdf = prior_lpdf + priors
return prior_lpdf
def log_hmc_target_warped_space(self, eps):
# Unnormalized density p(epsilon | data)
if self.dataset == 'funnel' or self.dataset == 'banana':
z = self.bij.forward(eps)
# z = self.phi_m + self.phi_s * eps
part1 = self.likelihood(z)
part2 = self.bij.forward_log_det_jacobian(eps, 1)
# part2 = tf.reduce_sum(tf.math.log(self.phi_s))
return part1 + part2
elif self.dataset == 'survey':
z = self.bij.forward(eps)
part1 = self.likelihood(z) + self.prior(z)
part2 = self.bij.forward_log_det_jacobian(eps, 1)
return part1 + part2
def log_hmc_target_original_space(self, z):
# Unnormalized density p(z | data)
if self.dataset == 'funnel' or self.dataset == 'banana':
return self.likelihood(z)
elif self.dataset == 'survey':
return self.likelihood(z) + self.prior(z)
def loss(self, z):
if self.v_fam == 'iaf' or self.v_fam == 'flow':
z0 = self.bij.inverse(z)
logqz_x = tf.reduce_mean(log_normal_pdf(z0, 0., 0.) - self.bij.forward_log_det_jacobian(z0, 1))
elif self.v_fam == 'gaussian':
logqz_x = tf.reduce_mean(log_normal_pdf(z, self.phi_m, 2 * tf.math.log(self.phi_s)))
if self.dataset == 'funnel' or self.dataset == 'banana':
return 0, -logqz_x # Just KL(pq)
elif self.dataset == 'survey':
return -tf.reduce_mean(self.likelihood(z)) - tf.reduce_mean(self.prior(z)), -logqz_x
def make_model(self):
x_in = tfkl.Input(shape=(self.num_dims,), dtype=tf.float32) # eps
x_ = self.made(x_in)
self.model = tfk.Model(x_in, x_)
self.bij = tfb.Invert(tfb.MaskedAutoregressiveFlow(self.model))
self.q = tfd.TransformedDistribution(
self.base_distribution,
self.bij)
def load_model(self, path):
self.model.load_weights(path)
self.bij = tfb.Invert(tfb.MaskedAutoregressiveFlow(self.model))
self.q = tfd.TransformedDistribution(
self.base_distribution,
self.bij)
def reset_hmc_kernel(self):
if self.is_accepted > 0.9:
self.hmc_e = min(self.hmc_e * 1.01, 1.)
elif self.is_accepted < 0.67:
self.hmc_e = self.hmc_e * 0.99
self.hmc_L = min(max(1, int(1 / self.hmc_e)), 33)
self.hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=self.log_hmc_target,
step_size=np.float32(self.hmc_e),
num_leapfrog_steps=self.hmc_L,
state_gradients_are_stopped=True)
def record_data(self, lst):
if self.dataset == 'funnel' or self.dataset == 'banana':
if self.v_fam == 'gaussian':
lst[0].append(self.phi_m.numpy())
lst[1].append(self.phi_s.numpy())
elif self.dataset == 'survey':
if self.v_fam == 'gaussian':
lst[0].append(self.phi_m.numpy())
lst[1].append(self.phi_s.numpy())
lst[2].append(self.gamma_0.numpy())
lst[3].append(self.gamma.numpy())
lst[4].append(self.sigma.numpy())
elif self.v_fam == 'iaf' or self.v_fam == 'flow':
lst[2].append(self.gamma_0.numpy())
lst[3].append(self.gamma.numpy())
lst[4].append(self.sigma.numpy())
return lst
def train(self, epochs=int(1e5), lr=0.001, decay_rate=0.001, natural_gradient=False, save=True, path=None, load_path=None, load_epoch=1):
lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay(lr, 1, decay_rate)
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
if self.dataset == 'survey' and (self.v_fam == 'iaf' or self.v_fam == 'flow'):
lr_schedule_q_flow = tf.keras.optimizers.schedules.InverseTimeDecay(lr/30, 1, decay_rate)
optimizer_q = tf.keras.optimizers.Adam(learning_rate=lr_schedule_q_flow)
if natural_gradient:
optimizer = tf.keras.optimizers.SGD(learning_rate=lr_schedule)
phi_m = []
phi_s = []
gamma_0 = []
gamma = []
sigma = []
params = [phi_m, phi_s, gamma_0, gamma, sigma]
params_savenames = ['phi_m.csv', 'phi_s.csv', 'gamma_0.csv', 'gamma.csv', 'sigma.csv']
losses = []
hmc_points = [] # record points directly from HMC, not passed to transport map
posterior_stds = [] # record posterior stds (approx) in flow, to monitor convergence
is_accepted = 0
if save:
tm = str(datetime.datetime.now())
tm_str = tm[:10]+'-'+tm[11:13]+tm[14:16]+tm[17:19]
if path is None:
path = 'results/' + self.dataset + '/' + 'vi_klpq_' + self.v_fam + '/' + tm_str + '/'
else:
path += self.dataset + '/' + 'vi_klpq_' + self.v_fam + '/' + tm_str + '/'
if not os.path.exists(path):
os.makedirs(path)
os.makedirs(path+'30000/')
if load_path is not None and self.dataset == 'survey':
gamma_0 = list(np.genfromtxt(load_path+'gamma_0.csv', dtype='float32'))
gamma = list(np.genfromtxt(load_path+'gamma.csv', dtype='float32'))
sigma = list(np.genfromtxt(load_path+'sigma.csv', dtype='float32'))
losses = list(np.genfromtxt(load_path+'losses.csv'))
hmc_points = list(np.genfromtxt(load_path+'hmc_points.csv'))
self.gamma_0.assign(gamma_0[-1])
self.gamma.assign(gamma[-1])
self.sigma.assign(sigma[-1])
if self.v_fam == 'iaf' or self.v_fam == 'flow':
self.load_model(load_path+'flow_model/model')
elif self.v_fam == 'gaussian':
phi_m = list(np.genfromtxt(load_path+'phi_m.csv', dtype='float32'))
phi_s = list(np.genfromtxt(load_path+'phi_s.csv', dtype='float32'))
self.phi_m.assign(phi_m[-1])
self.phi_s.assign(phi_s[-1])
params = [phi_m, phi_s, gamma_0, gamma, sigma]
if self.space == 'eps' or self.space == 'warped':
if self.v_fam == 'gaussian':
self.bij = tfb.Affine(
shift=self.phi_m,
scale_diag=self.phi_s)
self.current_state = self.bij.inverse(np.genfromtxt(load_path+'hmc_points.csv'))
else:
self.current_state = np.genfromtxt(load_path+'hmc_points.csv')
for epoch in range(load_epoch, epochs+1):
begin = datetime.datetime.now()
# --- Get HMC sample ---+
out = tfp.mcmc.sample_chain(self.num_samp, self.current_state,
previous_kernel_results=None, kernel=self.hmc_kernel,
num_burnin_steps=0, num_steps_between_results=0,
trace_fn=(lambda current_state, kernel_results: kernel_results.is_accepted),
parallel_iterations=1000,
return_final_kernel_results=False, seed=None, name=None)
results_is_accepted = out[1]
out = out[0]
if len(out.shape) > 2:
out = tf.squeeze(out, axis=0)
if len(out.shape) < 2:
out = tf.expand_dims(out, axis=0)
if self.space == 'eps' or self.space == 'warped':
eps = out
z = self.bij.forward(eps)
else:
z = out
z = tf.stop_gradient(z)
params = self.record_data(params)
hmc_points.append(z.numpy())
is_accepted += np.mean(np.squeeze(results_is_accepted.numpy()))
self.is_accepted = is_accepted/(epoch+1)
# --- Training ---+
# z_in = tf.gather(z, [self.num_samp-1])
z_in = z
with tf.GradientTape(persistent=True) as tape:
loss_p, loss_q = self.loss(z_in)
loss_value = loss_p + loss_q
if self.dataset == 'survey' and (self.v_fam == 'iaf' or self.v_fam == 'flow'):
grads_p = tape.gradient(loss_p, self.trainable_var_p)
optimizer.apply_gradients(zip(grads_p, self.trainable_var_p))
grads_q = tape.gradient(loss_q, self.trainable_var_q)
optimizer_q.apply_gradients(zip(grads_q, self.trainable_var_q))
else:
grads = tape.gradient(loss_value, self.trainable_var)
if natural_gradient:
grads = tf.expand_dims(tf.concat(list(grads), axis=0), axis=0)
F = tf.stop_gradient(
- E_log_normal_hessian(self.phi_m, self.phi_s))
grads = tf.matmul(tf.linalg.inv(F), tf.transpose(grads))
grads = tf.squeeze(grads)
grads = tf.split(grads, [self.num_dims, self.num_dims])
optimizer.apply_gradients(zip(grads, self.trainable_var))
del tape
losses.append(loss_value.numpy())
# --- Update current state for hmc kernel ---+
if self.space == 'eps' or self.space == 'warped':
if self.v_fam == 'gaussian':
self.bij = tfb.Affine(
shift=self.phi_m,
scale_diag=self.phi_s)
self.current_state = self.bij.inverse(z)
else:
self.current_state = z
if epoch > 10000 and self.dataset == 'survey':
self.reset_hmc_kernel()
end = datetime.datetime.now()
# --- Print and save results ---+
if epoch % 1 == 0:
print(end-begin)
if self.dataset == 'funnel' or self.dataset == 'banana':
if self.v_fam == 'iaf' or self.v_fam == 'flow':
print('Epoch', epoch,
'Loss', loss_value.numpy(),
'point', np.round(tf.gather(z, 0).numpy(),3),
'acceptance rate', round(self.is_accepted, 3))
elif self.v_fam == 'gaussian':
print('Epoch', epoch,
'Loss', np.round(loss_value.numpy(),3),
'point', np.round(tf.gather(z, 0).numpy(),3),
'phi_s', np.round(self.phi_s.numpy(),3),
'acceptance rate', round(self.is_accepted, 3))
elif self.dataset == 'survey':
if self.v_fam == 'iaf' or self.v_fam == 'flow':
print('Epoch', epoch,
'Loss', loss_value.numpy(),
'acceptance rate', round(self.is_accepted, 3),
'gamma', np.round(self.gamma.numpy(),3),
'hmc_e', np.round(self.hmc_e, 3))
elif self.v_fam == 'gaussian':
print('Epoch', epoch,
'Loss', np.round(loss_value.numpy(),3),
'acceptance rate', round(self.is_accepted, 3),
'gamma', np.round(self.gamma.numpy(),3),
'phi_s', np.round(np.mean(self.phi_s.numpy()),3),
'hmc_e', np.round(self.hmc_e, 3))
if epoch % 100 == 0:
# Monitor convergence for flow-based distributions:
if self.v_fam == 'iaf' or self.v_fam == 'flow':
iaf_pq_samp = self.q.sample(int(1e6))
s = tf.math.reduce_std(iaf_pq_samp, axis=0).numpy()
m = tf.reduce_mean(iaf_pq_samp, axis=0).numpy()
posterior_stds.append(s)
if epochs - epoch < 100:
i = epochs - epoch
if self.v_fam == 'iaf' or self.v_fam == 'flow':
self.model.save_weights(path + 'models/model{}/model'.format(i))
if epoch == epochs:
model_agg = combine_nn_params(self.model, path, 100)
model_agg.save_weights(path + 'models/model_agg/model')
if (epoch % 10000 == 0 or epoch == 1) and save:
np.savetxt(path+'losses.csv', np.array(losses))
with open(path+'hmc_points.pickle', 'wb') as handle:
pickle.dump(hmc_points, handle, protocol=pickle.HIGHEST_PROTOCOL)
if self.v_fam == 'iaf' or self.v_fam == 'flow':
self.model.save_weights(path + 'flow_model/model')
np.savetxt(path+'posterior_stds.csv', np.array(posterior_stds))
for i in range(len(params)):
if len(params[i]) != 0:
np.savetxt(path + params_savenames[i], np.array(params[i]))
if epoch == 1:
rp = open(path + "run_parameters.txt", "w")
rp.write('dataset: ' + str(self.dataset) + '\n')
rp.write('variational family: ' + self.v_fam + '\n')
rp.write('epochs: ' + str(epochs) + '\n')
rp.write('learning rate: ' + str(lr) + '\n')
rp.write('decay rate: ' + str(decay_rate) + '\n')
rp.write('number of samples: ' + str(self.num_samp) + '\n')
rp.write('HMC space: ' + self.space + '\n')
rp.write('HMC step size e: ' + str(self.hmc_e) + '\n')
rp.write('HMC number of leapfrog steps L: ' + str(self.hmc_L) + '\n')
rp.write('HMC number of chains: ' + str(self.chains) + '\n')
rp.close()
class HMC:
def __init__(self, space='eps', num_dims=2, iters=int(1e4), chains=1,
hmc_e=0.25, hmc_L=4):
self.space = space
self.iters = iters
self.chains = chains
self.hmc_e = hmc_e
self.hmc_L = hmc_L
self.target = Funnel(num_dims).get_dist()
self.base_distribution = tfd.Sample(
tfd.Normal(0., 1.), sample_shape=[num_dims])
if self.space == 'eps':
self.made = tfb.AutoregressiveNetwork(
params=2,
hidden_units=[20, 20],
event_shape=(2,),
activation='elu',
kernel_initializer=tfk.initializers.GlorotNormal())
self.make_model()
self.current_state = self.base_distribution.sample(self.chains)
def make_model(self):
x_in = tfkl.Input(shape=(2,), dtype=tf.float32) # eps
x_ = self.made(x_in)
self.model = tfk.Model(x_in, x_)
self.iaf_bijector_qp = tfb.Invert(tfb.MaskedAutoregressiveFlow(self.model))
self.q_iaf_qp = tfd.TransformedDistribution(
self.base_distribution,
self.iaf_bijector_qp)
def load_model(self, path):
if self.space == 'eps':
self.model.load_weights(path)
self.iaf_bijector_qp = tfb.Invert(tfb.MaskedAutoregressiveFlow(self.model))
self.q_iaf_qp = tfd.TransformedDistribution(
self.base_distribution,
self.iaf_bijector_qp)
else:
print('This is only valid with HMC on warped space (epsilon-space).')
def log_hmc_target(self, eps):
# Unnormalized density, p(epsilon | data)
# Needs global variables iaf_bijector and target
theta = self.iaf_bijector_qp.forward(eps)
part1 = self.target.log_prob(theta)
part2 = self.iaf_bijector_qp.forward_log_det_jacobian(eps, 1)
return part1 + part2
def run(self, load_path=None, save=True, path=None):
if self.space == 'eps':
if load_path is not None:
self.load_model(path)
self.hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=self.log_hmc_target,
step_size=np.float32(self.hmc_e),
num_leapfrog_steps=self.hmc_L,
state_gradients_are_stopped=True)
else:
self.hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=self.target.log_prob,
step_size=np.float32(self.hmc_e),
num_leapfrog_steps=self.hmc_L,
state_gradients_are_stopped=True)
out = tfp.mcmc.sample_chain(
self.iters, self.current_state, previous_kernel_results=None, kernel=self.hmc_kernel,
num_burnin_steps=0, num_steps_between_results=0, parallel_iterations=self.chains,
trace_fn=(lambda current_state, kernel_results: kernel_results.is_accepted),
return_final_kernel_results=False, seed=None, name=None)
accept_rate = np.sum(np.squeeze(out[1].numpy()))/self.iters/self.chains
if save:
tm = str(datetime.datetime.now())
tm_str = tm[:10]+'-'+tm[11:13]+tm[14:16]+tm[17:19]
if path is None:
path = 'results/' + 'hmc_' + self.space + '/' + tm_str + '/'
else:
path += 'hmc_' + self.space + '/' + tm_str + '/'
if not os.path.exists(path):
os.makedirs(path)
if self.space == 'eps':
out_eps = out[0].numpy() # iters x chains x num_dims
samps = []
for i in range(self.chains):
samps.append(self.iaf_bijector_qp.forward(out_eps[:,i,:]))
samps = np.array(samps)
np.savetxt(path + 'hmc.csv', np.reshape(samps,(-1,2)))
else:
samps = out[0].numpy()
np.savetxt(path + 'hmc.csv', np.reshape(samps,(-1,2)))
rp = open(path + "run_parameters.txt", "w")
rp.write('iters: ' + str(self.iters) + '\n')
rp.write('chains: ' + str(self.chains) + '\n')
rp.write('HMC step size e: ' + str(self.hmc_e) + '\n')
rp.write('HMC number of leapfrog steps L: ' + str(self.hmc_L) + '\n')
rp.write('acceptance rate: ' +str( round(accept_rate,3) ) + '\n')
rp.close()