-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassifier.py
772 lines (726 loc) · 45.2 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
import itertools
import networkx as nx
import numpy as np
import torch
import torchvision
from data import TabularDataLoader, IMGDataLoader
from mpe import compute_mpe
from utils import subset, powerset
from utils import train_tabular_base_clfs, train_img_base_clfs
from utils import compute_cll_tabular_clfs, compute_cll_img_clfs
from utils import predict_proba_base_clfs, predict_log_proba_base_clfs
from temperature_scaling import ModelWithTemperature
from tqdm import tqdm
from sklearn.base import ClassifierMixin
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.linear_model import SGDClassifier
from pgmpy.models import BayesianNetwork
from pgmpy.factors.discrete.CPD import TabularCPD
from pgmpy.inference.ExactInference import VariableElimination
from pygobnilp.gobnilp import Gobnilp
class TabularClassifier:
def __init__(self,
palim: int = 3,
disclim: int = 5,
base: str = None):
self.palim = palim
self.base = base
self.disc_lim = disclim
self.label_domains = None
self.discrete_feature_domains = None
self.selected_discrete_features = None
self.classifiers = None
self.parent_dict = None
self.scores = None
self.__best_subset_scores = None
self.bn = None
def __init_structures(self, label_domains, discrete_feature_domains):
self.label_domains = label_domains
self.discrete_feature_domains = discrete_feature_domains
if discrete_feature_domains:
self.selected_discrete_features = {node: {} for node in list(label_domains.keys())}
self.classifiers = {node: {} for node in list(label_domains.keys())}
# A dictionary that scores[i][parents] stores the CLL score for node i given its parents
self.scores = {node: {} for node in list(label_domains.keys())}
self.__best_subset_scores = {node: {} for node in list(label_domains.keys())}
self.bn = None
def fit(self, train_data_loader: TabularDataLoader, show_log=False):
self.__init_structures(train_data_loader.label_domains, train_data_loader.discrete_feature_domains)
all_nodes = list(self.label_domains.keys())
candidate_child_nodes = list(self.label_domains.keys())
stopped_parents = {node: [] for node in candidate_child_nodes}
for n_parents in tqdm(range(self.palim + 1)):
all_parents = {node: list(subset(list(set(all_nodes) - {node}), n_elements=n_parents))
for node in candidate_child_nodes}
for node in list(all_parents.keys()):
cur_parents = all_parents[node]
is_stopped_cur_parents = [False for _ in range(len(cur_parents))]
for parents_idx, parents in enumerate(cur_parents):
parent_set = frozenset(parents)
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
configurations = list(itertools.product(*parent_domains))
penalty = -0.5 * np.log(len(train_data_loader.continuous_features)) \
* len(configurations) * (len(self.label_domains[node]) - 1)
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<20.3f}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Penalty:', penalty))
if len(parents) != 0:
parent_subsets = list(subset(parents, len(parents) - 1))
if not set(parent_subsets).isdisjoint(set(stopped_parents[node])):
stopped_parents[node].append(parents)
is_stopped_cur_parents[parents_idx] = True
continue
subset_scores = [self.__best_subset_scores[node][frozenset(parent_subset)]
for parent_subset in parent_subsets]
best_subset_score = max(subset_scores)
if best_subset_score >= penalty:
self.__best_subset_scores[node][parent_set] = best_subset_score
stopped_parents[node].append(parents)
is_stopped_cur_parents[parents_idx] = True
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Pruned and stop growing!'))
continue
config_clfs = dict()
bic_score = penalty
for configuration in configurations:
configuration = tuple(configuration)
local_features, local_labels = train_data_loader.get_slices(node, parents, configuration)
if local_features.shape[0] == 0:
clf = [1 / len(self.label_domains[node])] * len(self.label_domains[node])
config_clfs[configuration] = clf
continue
if np.all(local_labels == local_labels[0]):
clf = [0] * len(self.label_domains[node])
clf[int(local_labels[0])] = 1
config_clfs[configuration] = clf
continue
else:
clf = self._create_base_clfs(self.base)
if isinstance(clf, torch.nn.Module):
x_train, y_train = torch.Tensor(local_features), torch.Tensor(local_labels)
y_train = y_train.type(torch.LongTensor)
train_tabular_base_clfs(model=clf, x_train=x_train, y_train=y_train)
elif isinstance(clf, (ClassifierMixin, list)):
x_train, y_train = local_features, local_labels
train_tabular_base_clfs(model=clf, x_train=x_train, y_train=y_train)
else:
raise NotImplementedError
config_clfs[configuration] = clf
bic_score += compute_cll_tabular_clfs(model=clf, x_train=x_train, y_train=y_train)
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<20.3f}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'CLL Score:', bic_score))
self.__best_subset_scores[node][parent_set] = bic_score
if len(parents) != 0:
parent_subsets = list(subset(parents, len(parents) - 1))
subset_scores = [self.__best_subset_scores[node][frozenset(parent_subset)]
for parent_subset in parent_subsets]
best_subset_score = max(subset_scores)
if best_subset_score >= bic_score:
self.__best_subset_scores[node][parent_set] = best_subset_score
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Pruned!'))
continue
self.classifiers[node][parent_set] = config_clfs
self.scores[node][parent_set] = bic_score
if np.all(is_stopped_cur_parents):
if show_log:
print('{:<10}{:<5}{}'.format('Node:', node, 'Stopped growing!'))
candidate_child_nodes.remove(node)
def fit_mix(self, train_data_loader: TabularDataLoader, show_log=False):
self.__init_structures(train_data_loader.label_domains, train_data_loader.discrete_feature_domains)
all_nodes = list(self.label_domains.keys())
cand_child_nodes = list(self.label_domains.keys())
stopped_parents = {node: [] for node in all_nodes}
all_discs = list(self.discrete_feature_domains.keys())
for n_parents in range(self.palim + 1):
all_parents = {node: list(subset(list(set(all_nodes) - {node}), n_elements=n_parents))
for node in cand_child_nodes}
for node in list(all_parents.keys()):
cur_parents = all_parents[node]
is_stopped_cur_parents = [False for _ in range(len(cur_parents))]
for parents_idx, parents in enumerate(cur_parents):
parent_set = frozenset(parents)
best_subset_score = -np.inf
if len(parents) > 0:
parent_subsets = list(subset(parents, len(parents) - 1))
if not set(parent_subsets).isdisjoint(set(stopped_parents[node])):
stopped_parents[node].append(parents)
is_stopped_cur_parents[parents_idx] = True
continue
subset_scores = [self.__best_subset_scores[node][frozenset(parent_subset)]
for parent_subset in parent_subsets]
best_subset_score = max(subset_scores)
is_stopped_parents_target = True
best_base_clfs = dict()
best_parents_disc = None
best_cll_score = -np.inf
stopped_discs = []
best_sub_disc_scores = dict()
for n_parents_disc in range(self.disc_lim + 1):
all_parents_disc = list(subset(all_discs, n_elements=n_parents_disc))
is_stopped_cur_discs = True
for parents_disc_idx, parents_disc in enumerate(tqdm(all_parents_disc)):
parents_disc_target = parents + parents_disc
parent_target_domains = [self.label_domains[parent] for parent in parents]
parent_disc_domains = [self.discrete_feature_domains[parent] for parent in parents_disc]
parent_domains = parent_target_domains + parent_disc_domains
# disc_configurations = list(itertools.product(*parent_disc_domains))
configurations = list(itertools.product(*parent_domains))
# penalty_disc = -0.5 * np.log(len(train_data_loader.continuous_features)) \
# * len(disc_configurations) * (len(self.label_domains[node]) - 1)
penalty_disc = -0.5 * np.log(len(train_data_loader.continuous_features)) * \
len(configurations) * (len(self.label_domains[node]) - 1)
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<30}'
'{:<20}{:<20.3f}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Discrete: ', '{}'.format(list(parents_disc)),
'Penalty:', penalty_disc))
if len(parents) > 0:
if best_subset_score >= penalty_disc:
continue
is_stopped_parents_target = False
best_sub_disc_score = None
if len(parents_disc) > 0:
disc_subsets = list(subset(parents_disc, len(parents_disc) - 1))
if not set(disc_subsets).isdisjoint(set(stopped_discs)):
stopped_discs.append(parents_disc)
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<30}'
'{}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Discrete: ', '{}'.format(list(parents_disc)),
'Pruned and stop growing!'))
continue
sub_disc_scores = [best_sub_disc_scores[frozenset(disc_subset)]
for disc_subset in disc_subsets]
best_sub_disc_score = max(sub_disc_scores)
if best_sub_disc_score >= penalty_disc:
best_sub_disc_scores[parent_set] = best_sub_disc_score
stopped_discs.append(parents_disc)
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<30}'
'{}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Discrete:', '{}'.format(list(parents_disc)),
'Pruned and stop growing!'))
continue
is_stopped_cur_discs = False
cll_score = penalty_disc
base_clfs = dict()
for configuration in configurations:
configuration = tuple(configuration)
local_features, local_labels = train_data_loader.get_slices(node,
parents_disc_target,
configuration)
if local_features.shape[0] == 0:
clf = [1 / len(self.label_domains[node])] * len(self.label_domains[node])
# strange cases occur in some data sets that two samples with the same
# feature vector have different labels
elif np.all(local_features == local_features[0]) and \
not np.all(local_labels == local_labels[0]):
clf = [1 / len(self.label_domains[node])] * len(self.label_domains[node])
elif np.all(local_labels == local_labels[0]):
clf = [0] * len(self.label_domains[node])
clf[int(local_labels[0])] = 1
else:
clf = self._create_base_clfs(self.base)
x_train, y_train = local_features, local_labels
train_tabular_base_clfs(model=clf, x_train=x_train, y_train=y_train)
cll_score += compute_cll_tabular_clfs(model=clf, x_train=x_train, y_train=y_train)
base_clfs[configuration] = clf
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<30}'
'{:<20}{:<20.3f}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Discrete: ', '{}'.format(list(parents_disc)),
'CLL Score:', cll_score))
if len(parents_disc) > 0:
if best_sub_disc_score >= penalty_disc:
best_sub_disc_scores[parent_set] = best_sub_disc_score
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<30}'
'{}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Discrete:', '{}'.format(list(parents_disc)),
'Pruned and stop growing!'))
continue
best_sub_disc_scores[frozenset(parents_disc)] = cll_score
if cll_score > best_cll_score:
best_base_clfs.update(base_clfs)
best_parents_disc = parents_disc
best_cll_score = cll_score
if is_stopped_cur_discs:
if show_log:
print('{:<10}{:<5}{}'.format('Node:', node, 'Discrete stopped growing!'))
break
if is_stopped_parents_target:
self.__best_subset_scores[node][parent_set] = best_subset_score
stopped_parents[node].append(parents)
is_stopped_cur_parents[parents_idx] = True
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Pruned and stop growing!'))
continue
if len(parents) != 0:
parent_subsets = list(subset(parents, len(parents) - 1))
subset_scores = [self.__best_subset_scores[node][frozenset(parent_subset)]
for parent_subset in parent_subsets]
best_subset_score = max(subset_scores)
if best_subset_score >= best_cll_score:
self.__best_subset_scores[node][parent_set] = best_subset_score
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Pruned!'))
continue
self.__best_subset_scores[node][parent_set] = best_cll_score
self.classifiers[node][parent_set] = best_base_clfs
self.selected_discrete_features[node][parent_set] = best_parents_disc
self.scores[node][parent_set] = best_cll_score
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<30}'
'{:<20}{:<20.3f}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Selected: ', '{}'.format(list(best_parents_disc)),
'CLL Score:', self.__best_subset_scores[node][parent_set]))
if np.all(is_stopped_cur_parents):
if show_log:
print('{:<10}{:<5}{}'.format('Node:', node, 'Stopped growing!'))
cand_child_nodes.remove(node)
def learn_structure(self, plot=True):
m = Gobnilp()
m.learn(local_scores_source=self.scores, palim=self.palim, plot=plot)
self.bn = m.learned_bn
parent_dict = {node: [] for node in list(self.label_domains.keys())}
for edge in list(self.bn.edges):
parent_dict[edge[1]].append(edge[0])
for k, v in parent_dict.items():
parent_dict[k] = sorted(v)
self.parent_dict = parent_dict
# Prune the clfs and selected discrete features dicts based on the learned structure
for node in list(self.label_domains.keys()):
for parent_set in list(self.classifiers[node].keys()):
if frozenset(parent_dict[node]) != parent_set:
self.classifiers[node].pop(parent_set, None)
if self.selected_discrete_features:
for node in list(self.label_domains.keys()):
for parent_set in list(self.selected_discrete_features[node].keys()):
if frozenset(parent_dict[node]) != parent_set:
self.selected_discrete_features[node].pop(parent_set, None)
def inference(self, test_features):
bn = BayesianNetwork()
bn.add_nodes_from(self.bn.nodes)
bn.add_edges_from(self.bn.edges)
pred_labels = np.empty(shape=(len(test_features), len(self.label_domains)))
for i, test_feature in enumerate(tqdm(test_features)):
for child, parents in self.parent_dict.items():
parent_set = frozenset(parents)
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
configurations = list(itertools.product(*parent_domains))
cp_matrix = np.empty(shape=(len(self.label_domains[child]), len(configurations)), dtype=np.float32)
for j, configuration in enumerate(configurations):
clf = self.classifiers[child][parent_set][tuple(configuration)]
cond_probs = predict_proba_base_clfs(clf, test_feature)
if isinstance(clf, ClassifierMixin) and len(self.label_domains[child]) > len(clf.classes_):
corrected_cond_probs = np.zeros(shape=len(self.label_domains[child]), dtype=np.float32)
for idx_c, c in enumerate(clf.classes_):
corrected_cond_probs[c] = cond_probs[:, idx_c]
cond_probs = corrected_cond_probs
cp_matrix[:, j] = cond_probs
cpd = TabularCPD(variable=child, variable_card=len(self.label_domains[child]), values=cp_matrix,
evidence=parents,
evidence_card=[len(self.label_domains[parent]) for parent in parents])
bn.add_cpds(cpd)
max_prob, assignments = compute_mpe(graph=bn,
variables=['0'],
evidence=None,
elimination_order=None,
show_progress=False)
for v in assignments.keys():
pred_labels[i, int(v)] = assignments[v]
bn.cpds = []
return pred_labels
def inference_hamming(self, test_features):
bn = BayesianNetwork()
bn.add_nodes_from(self.bn.nodes)
bn.add_edges_from(self.bn.edges)
pred_labels = np.empty(shape=(len(test_features), len(self.label_domains)))
for i, test_feature in enumerate(tqdm(test_features)):
for child, parents in self.parent_dict.items():
parent_set = frozenset(parents)
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
configurations = list(itertools.product(*parent_domains))
cp_matrix = np.empty(shape=(len(self.label_domains[child]), len(configurations)), dtype=np.float32)
for j, configuration in enumerate(configurations):
clf = self.classifiers[child][parent_set][tuple(configuration)]
cond_probs = predict_proba_base_clfs(clf, test_feature)
if isinstance(clf, ClassifierMixin) and len(self.label_domains[child]) > len(clf.classes_):
corrected_cond_probs = np.zeros(shape=len(self.label_domains[child]), dtype=np.float32)
for idx_c, c in enumerate(clf.classes_):
corrected_cond_probs[c] = cond_probs[:, idx_c]
cond_probs = corrected_cond_probs
cp_matrix[:, j] = cond_probs
cpd = TabularCPD(variable=child, variable_card=len(self.label_domains[child]), values=cp_matrix,
evidence=parents,
evidence_card=[len(self.label_domains[parent]) for parent in parents])
bn.add_cpds(cpd)
inferencer = VariableElimination(bn)
for k in self.label_domains.keys():
pred_labels[i, int(k)] = inferencer.map_query(variables=[k], show_progress=False)[k]
bn.cpds = []
return pred_labels
def inference_mix(self, cont_features, disc_features):
bn = BayesianNetwork(self.bn)
pred_labels = np.empty(shape=(len(cont_features), len(self.label_domains)))
for i, cont_feature in enumerate(tqdm(cont_features)):
disc_feature = disc_features[i]
for child, parents in self.parent_dict.items():
parent_set = frozenset(parents)
parents_disc = self.selected_discrete_features[child][parent_set]
parent_disc_indices = [ord(c) - 97 for c in parents_disc]
selected_disc_values = disc_feature[parent_disc_indices]
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
target_configurations = list(itertools.product(*parent_domains))
cp = np.empty(shape=(len(self.label_domains[child]), len(target_configurations)), dtype=np.float32)
for j, target_configuration in enumerate(target_configurations):
configuration = target_configuration + tuple(selected_disc_values)
clf = self.classifiers[child][parent_set][tuple(configuration)]
cond_probs = predict_proba_base_clfs(clf, cont_feature)
if isinstance(clf, ClassifierMixin) and len(self.label_domains[child]) > len(clf.classes_):
corrected_cond_probs = np.zeros(shape=len(self.label_domains[child]), dtype=np.float32)
for idx_c, c in enumerate(clf.classes_):
corrected_cond_probs[c] = cond_probs[:, idx_c]
cond_probs = corrected_cond_probs
cp[:, j] = cond_probs
cpd = TabularCPD(variable=child, variable_card=len(self.label_domains[child]), values=cp,
evidence=parents,
evidence_card=[len(self.label_domains[parent]) for parent in parents])
bn.add_cpds(cpd)
max_prob, assignments = compute_mpe(graph=bn,
variables=['0'],
evidence=None,
elimination_order=None,
show_progress=False)
for v in assignments.keys():
pred_labels[i, int(v)] = assignments[v]
bn.cpds = []
return pred_labels
def inference_hamming_mix(self, cont_features, disc_features):
bn = BayesianNetwork(self.bn)
pred_labels = np.empty(shape=(len(cont_features), len(self.label_domains)))
for i, cont_feature in enumerate(tqdm(cont_features)):
disc_feature = disc_features[i]
for child, parents in self.parent_dict.items():
parent_set = frozenset(parents)
parents_disc = self.selected_discrete_features[child][parent_set]
parent_disc_indices = [ord(c) - 97 for c in parents_disc]
selected_disc_values = disc_feature[parent_disc_indices]
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
target_configurations = list(itertools.product(*parent_domains))
cp = np.empty(shape=(len(self.label_domains[child]), len(target_configurations)), dtype=np.float32)
for j, target_configuration in enumerate(target_configurations):
configuration = target_configuration + tuple(selected_disc_values)
clf = self.classifiers[child][parent_set][tuple(configuration)]
cond_probs = predict_proba_base_clfs(clf, cont_feature)
if isinstance(clf, ClassifierMixin) and len(self.label_domains[child]) > len(clf.classes_):
corrected_cond_probs = np.zeros(shape=len(self.label_domains[child]), dtype=np.float32)
for idx_c, c in enumerate(clf.classes_):
corrected_cond_probs[c] = cond_probs[:, idx_c]
cond_probs = corrected_cond_probs
cp[:, j] = cond_probs
cpd = TabularCPD(variable=child, variable_card=len(self.label_domains[child]), values=cp,
evidence=parents,
evidence_card=[len(self.label_domains[parent]) for parent in parents])
bn.add_cpds(cpd)
inferencer = VariableElimination(bn)
for k in self.label_domains.keys():
pred_labels[i, int(k)] = inferencer.map_query(variables=[k], show_progress=False)[k]
bn.cpds = []
return pred_labels
def inference_seq(self, test_features):
pred_labels = np.zeros(shape=(len(test_features), len(self.label_domains)), dtype=int)
params = {node: {} for node in list(self.label_domains.keys())}
for child, parents in self.parent_dict.items():
parent_set = frozenset(parents)
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
configurations = list(itertools.product(*parent_domains))
log_probs = np.empty(shape=(len(test_features), len(self.label_domains[child]), len(configurations)),
dtype=np.float32)
for j, configuration in enumerate(configurations):
clf = self.classifiers[child][parent_set][tuple(configuration)]
log_prob = predict_proba_base_clfs(clf, test_features)
if isinstance(clf, ClassifierMixin) and len(self.label_domains[child]) > len(clf.classes_):
corrected_log_prob = np.zeros(shape=(len(test_features), len(self.label_domains[child])),
dtype=np.float32)
for idx_c, c in enumerate(clf.classes_):
corrected_log_prob[:, c] = log_prob[:, idx_c]
log_prob = corrected_log_prob
log_probs[:, :, j] = log_prob
params[child][parent_set] = log_probs
bfo = list(nx.topological_sort(self.bn))
root = bfo[0]
params_root = params[root][frozenset()]
assignment_root = np.argmax(params_root, axis=1).squeeze()
pred_labels[:, int(root)] = assignment_root
for node in bfo[1:]:
parents = self.parent_dict[node]
parent_set = frozenset(parents)
parent_indices = [int(parent) for parent in parents]
params_node_all_configs = params[node][parent_set]
n_features, n_node_states, n_configs = params_node_all_configs.shape
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
configurations = np.array(list(itertools.product(*parent_domains)))
parent_assignments = pred_labels[:, parent_indices]
# https://stackoverflow.com/questions/64930665/find-indices-of-rows-of-numpy-2d-array-in-another-2d-array
indices = parent_assignments == configurations[:, None]
positions = np.zeros(n_features, dtype=int)
p, q = np.where(np.all(indices, axis=2) == True)
positions[q] = p
params_node = params_node_all_configs[np.arange(n_features), :, positions]
assignment_node = np.argmax(params_node, axis=1).squeeze()
pred_labels[:, int(node)] = assignment_node
return pred_labels
@staticmethod
def _create_base_clfs(base):
if base == 'lr':
return SGDClassifier(loss='log_loss', n_jobs=-1)
elif base == 'nb':
return GaussianNB()
elif base == 'rf':
return RandomForestClassifier(n_jobs=-1)
elif base == 'svm':
return SVC(probability=True)
else:
raise NotImplementedError
class IMGClassifier:
def __init__(self,
palim: int = 3):
self.palim = palim
self.label_domains = None
self.classifiers = None
self.parent_dict = None
self.scores = None
self.__best_subset_scores = None
self.bn = None
def __init_structures(self, label_domains):
self.label_domains = label_domains
self.classifiers = {node: {} for node in list(label_domains.keys())}
self.scores = {node: {} for node in list(label_domains.keys())}
self.__best_subset_scores = {node: {} for node in list(label_domains.keys())}
def fit(self,
train_data_loader: IMGDataLoader,
batch_size=32,
learning_rate=0.01,
n_epochs=5,
show_log=False,
base_trainer=None,
calibration=True):
self.__init_structures(train_data_loader.label_domains)
all_nodes = list(self.label_domains.keys())
candidate_child_nodes = list(self.label_domains.keys())
stopped_parents = {node: [] for node in candidate_child_nodes}
for n_parents in tqdm(range(self.palim + 1)):
all_parents = {node: list(subset(list(set(all_nodes) - {node}), n_elements=n_parents))
for node in candidate_child_nodes}
for node in list(all_parents.keys()):
cur_parents = all_parents[node]
is_stopped_cur_parents = True
for parents_idx, parents in enumerate(cur_parents):
parent_set = frozenset(parents)
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
configurations = list(itertools.product(*parent_domains))
penalty = -0.5 * np.log(len(train_data_loader.labels)) \
* len(configurations) * (len(self.label_domains[node]) - 1)
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<20.3f}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Penalty:', penalty))
best_subset_score = -np.inf
if len(parents) != 0:
parent_subsets = list(subset(parents, len(parents) - 1))
if not set(parent_subsets).isdisjoint(set(stopped_parents[node])):
stopped_parents[node].append(parents)
continue
subset_scores = [self.__best_subset_scores[node][frozenset(parent_subset)]
for parent_subset in parent_subsets]
best_subset_score = max(subset_scores)
if best_subset_score >= penalty:
self.__best_subset_scores[node][parent_set] = best_subset_score
stopped_parents[node].append(parents)
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Pruned and stop growing!'))
continue
is_stopped_cur_parents = False
config_clfs = dict()
bic_score = penalty
for configuration in configurations:
configuration = tuple(configuration)
local_files, local_labels = train_data_loader.get_slices(node, parents, configuration)
local_features, local_labels = train_data_loader.get_slices(node, parents, configuration)
if len(local_labels) == 0:
clf = [1 / len(self.label_domains[node])] * len(self.label_domains[node])
config_clfs[configuration] = clf
continue
if np.all(local_labels == local_labels[0]):
clf = [0] * len(self.label_domains[node])
clf[int(local_labels[0])] = 1
config_clfs[configuration] = clf
continue
else:
clf = self.__create_base_clfs(output_dim=len(self.label_domains[node]))
local_data_loader = train_data_loader.create_local_data_loaders(local_files=local_files,
local_labels=local_labels,
batch_size=batch_size)
if base_trainer:
base_trainer(model=clf,
train_data_loader=local_data_loader,
n_classes=len(self.label_domains[node]),
learning_rate=learning_rate,
n_epochs=n_epochs)
else:
train_img_base_clfs(model=clf,
train_data_loader=local_data_loader,
learning_rate=learning_rate,
n_epochs=n_epochs)
if calibration:
clf = ModelWithTemperature(clf)
clf.set_temperature(local_data_loader)
config_clfs[configuration] = clf
bic_score += compute_cll_img_clfs(model=clf, train_data_loader=local_data_loader)
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{:<20}{:<20.3f}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'CLL Score:', bic_score))
if len(parents) != 0:
if best_subset_score >= bic_score:
self.__best_subset_scores[node][parent_set] = best_subset_score
if show_log:
print('{:<10}{:<5}'
'{:<10}{:<30}'
'{}'.format('Node:', node,
'Parents:', '{}'.format(list(parents)),
'Pruned!'))
continue
self.__best_subset_scores[node][parent_set] = bic_score
self.classifiers[node][parent_set] = config_clfs
self.scores[node][parent_set] = bic_score
if is_stopped_cur_parents:
if show_log:
print('{:<10}{:<5}{}'.format('Node:', node, 'Stopped growing!'))
candidate_child_nodes.remove(node)
def learn_structure(self, plot=True):
m = Gobnilp()
m.learn(local_scores_source=self.scores, palim=self.palim, plot=plot)
self.bn = m.learned_bn
parent_dict = {node: [] for node in list(self.label_domains.keys())}
for edge in list(self.bn.edges):
parent_dict[edge[1]].append(edge[0])
for k, v in parent_dict.items():
parent_dict[k] = sorted(v)
self.parent_dict = parent_dict
# Prune the clfs and selected discrete features dicts based on the learned structure
for node in list(self.label_domains.keys()):
for parent_set in list(self.classifiers[node].keys()):
if frozenset(parent_dict[node]) != parent_set:
self.classifiers[node].pop(parent_set, None)
def inference(self, test_dataloader: IMGDataLoader):
bn = BayesianNetwork()
bn.add_nodes_from(self.bn.nodes)
bn.add_edges_from(self.bn.edges)
pred_labels = np.empty(shape=(len(test_dataloader.labels), len(self.label_domains)))
test_img_dataset = test_dataloader.create_img_datasets()
for i, (test_img, _) in enumerate(tqdm(test_img_dataset)):
test_img = test_img.unsqueeze(dim=0)
for child, parents in self.parent_dict.items():
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
configurations = list(itertools.product(*parent_domains))
cp_matrix = np.empty(shape=(len(self.label_domains[child]), len(configurations)), dtype=np.float32)
for j, configuration in enumerate(configurations):
clf = self.classifiers[child][frozenset(parents)][tuple(configuration)]
cp_matrix[:, j] = predict_proba_base_clfs(model=clf, x_test=test_img)
cpd = TabularCPD(variable=child, variable_card=len(self.label_domains[child]), values=cp_matrix,
evidence=parents,
evidence_card=[len(self.label_domains[parent]) for parent in parents])
bn.add_cpds(cpd)
max_prob, assignments = compute_mpe(graph=bn,
variables=['0'],
evidence=None,
elimination_order=None,
show_progress=False)
for v in assignments.keys():
pred_labels[i, int(v)] = assignments[v]
bn.cpds = []
return pred_labels
def inference_hamming(self, test_dataloader: IMGDataLoader):
bn = BayesianNetwork()
bn.add_nodes_from(self.bn.nodes)
bn.add_edges_from(self.bn.edges)
pred_labels = np.empty(shape=(len(test_dataloader.labels), len(self.label_domains)))
test_img_dataset = test_dataloader.create_img_datasets()
for i, (test_img, _) in enumerate(tqdm(test_img_dataset)):
test_img = test_img.unsqueeze(dim=0)
for child, parents in self.parent_dict.items():
parent_domains = [self.label_domains[parent_id] for parent_id in parents]
configurations = list(itertools.product(*parent_domains))
cp_matrix = np.empty(shape=(len(self.label_domains[child]), len(configurations)), dtype=np.float32)
for j, configuration in enumerate(configurations):
clf = self.classifiers[child][frozenset(parents)][tuple(configuration)]
cp_matrix[:, j] = predict_proba_base_clfs(model=clf, x_test=test_img)
cpd = TabularCPD(variable=child, variable_card=len(self.label_domains[child]), values=cp_matrix,
evidence=parents,
evidence_card=[len(self.label_domains[parent]) for parent in parents])
bn.add_cpds(cpd)
inferencer = VariableElimination(bn)
for k in self.label_domains.keys():
pred_labels[i, int(k)] = inferencer.map_query(variables=[k], show_progress=False)[k]
bn.cpds = []
return pred_labels
def __create_base_clfs(self, output_dim):
model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = torch.nn.Linear(model.fc.in_features, output_dim)
return model