-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_val.py
137 lines (118 loc) · 5.17 KB
/
train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import logging
import time
import torch
from tools.tools import AverageMeter, accuracy, is_main_process
def train(
train_loader,
model,
criterion,
optimizer,
epoch,
print_freq,
writer,
args=None,):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
if args.distribute:
local_rank = torch.distributed.get_rank()
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", local_rank)
else:
device = torch.device("cuda")
for i, (input, target) in enumerate(train_loader):
data_time.update(time.time() - end)
target = target.cuda(non_blocking=True, device=device)
if args.half:
with torch.cuda.amp.autocast():
output = model(input.cuda(device))
loss = criterion(output, target)
else:
output = model(input.cuda(device))
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
prec1, prec5 = accuracy(output, target, topk=(1, 5))
top5.update(prec5.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
losses.update(loss.item(), input.size(0))
if i % print_freq == 0 and is_main_process():
logging.info(('Epoch: [{0}][{1}/{2}], lr: {lr:.8f}\t'
'Batch {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.3f} ({loss.avg:.3f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'.format(epoch,
int(i),
int(len(train_loader)),
batch_time=batch_time,
loss=losses,
top1=top1,
top5=top5,
lr=optimizer.param_groups[-1]['lr'])))
if args.distribute:
losses.synchronize_between_processes()
top1.synchronize_between_processes()
top5.synchronize_between_processes()
if is_main_process():
writer.add_scalar('Train/loss', losses.avg, epoch)
writer.add_scalar('Train/top1', top1.avg, epoch)
writer.add_scalar('Train/lr', optimizer.param_groups[-1]['lr'], epoch)
logging.info(
('Epoch {epoch} Training Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}'
.format(epoch=epoch, top1=top1, top5=top5, loss=losses)))
def validate(val_loader, model, criterion, print_freq, epoch, writer, args=None):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
if args.distribute:
local_rank = torch.distributed.get_rank()
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", local_rank)
else:
device = torch.device("cuda")
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(non_blocking=True, device=device)
# compute output
output = model(input)
loss = criterion(output, target)
prec1, prec5 = accuracy(output, target, topk=(1, 5))
top5.update(prec5.item(), input.size(0))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0 and is_main_process():
logging.info(
('Test: [{0}/{1}]\t'
'Batch {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i,
len(val_loader),
batch_time=batch_time,
top1=top1,
top5=top5)))
if args.distribute:
losses.synchronize_between_processes()
top1.synchronize_between_processes()
top5.synchronize_between_processes()
if is_main_process():
writer.add_scalar('Test/loss', losses.avg, epoch)
writer.add_scalar('Test/top1', top1.avg, epoch)
logging.info(
('Epoch {epoch} Testing Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}'
.format(epoch=epoch, top1=top1, top5=top5, loss=losses)))
return (top1.avg + top5.avg) / 2