-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathshort_audio_transcribe_ali.py
243 lines (187 loc) · 5.38 KB
/
short_audio_transcribe_ali.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import argparse
import whisper
import torch
from tqdm import tqdm
import sys
import os
from common.constants import Languages
from common.log import logger
from common.stdout_wrapper import SAFE_STDOUT
import re
device = "cuda:0" if torch.cuda.is_available() else "cpu"
from funasr import AutoModel
model_dir = "iic/SenseVoiceSmall"
emo_dict = {
"<|HAPPY|>": "😊",
"<|SAD|>": "😔",
"<|ANGRY|>": "😡",
"<|NEUTRAL|>": "",
"<|FEARFUL|>": "😰",
"<|DISGUSTED|>": "🤢",
"<|SURPRISED|>": "😮",
}
event_dict = {
"<|BGM|>": "🎼",
"<|Speech|>": "",
"<|Applause|>": "👏",
"<|Laughter|>": "😀",
"<|Cry|>": "😭",
"<|Sneeze|>": "🤧",
"<|Breath|>": "",
"<|Cough|>": "🤧",
}
emoji_dict = {
"<|nospeech|><|Event_UNK|>": "❓",
"<|zh|>": "",
"<|en|>": "",
"<|yue|>": "",
"<|ja|>": "",
"<|ko|>": "",
"<|nospeech|>": "",
"<|HAPPY|>": "😊",
"<|SAD|>": "😔",
"<|ANGRY|>": "😡",
"<|NEUTRAL|>": "",
"<|BGM|>": "🎼",
"<|Speech|>": "",
"<|Applause|>": "👏",
"<|Laughter|>": "😀",
"<|FEARFUL|>": "😰",
"<|DISGUSTED|>": "🤢",
"<|SURPRISED|>": "😮",
"<|Cry|>": "😭",
"<|EMO_UNKNOWN|>": "",
"<|Sneeze|>": "🤧",
"<|Breath|>": "",
"<|Cough|>": "😷",
"<|Sing|>": "",
"<|Speech_Noise|>": "",
"<|withitn|>": "",
"<|woitn|>": "",
"<|GBG|>": "",
"<|Event_UNK|>": "",
}
lang_dict = {
"<|zh|>": "<|lang|>",
"<|en|>": "<|lang|>",
"<|yue|>": "<|lang|>",
"<|ja|>": "<|lang|>",
"<|ko|>": "<|lang|>",
"<|nospeech|>": "<|lang|>",
}
emo_set = {"😊", "😔", "😡", "😰", "🤢", "😮"}
event_set = {"🎼", "👏", "😀", "😭", "🤧", "😷",}
lang2token = {
'zh': "ZH|",
'ja': "JP|",
"en": "EN|",
"ko": "KO|",
"yue": "YUE|",
}
def format_str(s):
for sptk in emoji_dict:
s = s.replace(sptk, emoji_dict[sptk])
return s
def format_str_v2(s):
sptk_dict = {}
for sptk in emoji_dict:
sptk_dict[sptk] = s.count(sptk)
s = s.replace(sptk, "")
emo = "<|NEUTRAL|>"
for e in emo_dict:
if sptk_dict[e] > sptk_dict[emo]:
emo = e
for e in event_dict:
if sptk_dict[e] > 0:
s = event_dict[e] + s
s = s + emo_dict[emo]
for emoji in emo_set.union(event_set):
s = s.replace(" " + emoji, emoji)
s = s.replace(emoji + " ", emoji)
return s.strip()
def format_str_v3(s):
def get_emo(s):
return s[-1] if s[-1] in emo_set else None
def get_event(s):
return s[0] if s[0] in event_set else None
s = s.replace("<|nospeech|><|Event_UNK|>", "❓")
for lang in lang_dict:
s = s.replace(lang, "<|lang|>")
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
new_s = " " + s_list[0]
cur_ent_event = get_event(new_s)
for i in range(1, len(s_list)):
if len(s_list[i]) == 0:
continue
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
s_list[i] = s_list[i][1:]
#else:
cur_ent_event = get_event(s_list[i])
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
new_s = new_s[:-1]
new_s += s_list[i].strip().lstrip()
new_s = new_s.replace("The.", " ")
return new_s.strip()
def transcribe_one(audio_path,language):
model = AutoModel(model=model_dir,
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 30000},
trust_remote_code=True, device="cuda:0")
res = model.generate(
input=audio_path,
cache={},
language=language, # "zn", "en", "yue", "ja", "ko", "nospeech"
use_itn=False,
batch_size_s=0,
)
try:
text = res[0]["text"]
text = format_str_v3(text)
print(text)
except Exception as e:
print(e)
text = ""
return text,language
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--language", type=str, default="ja", choices=["ja", "en", "zh","yue","ko"]
)
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--input_file", type=str, default="./wavs/")
parser.add_argument("--file_pos", type=str, default="")
args = parser.parse_args()
speaker_name = args.model_name
language = args.language
input_file = args.input_file
if input_file == "":
input_file = "./wavs/"
file_pos = args.file_pos
wav_files = [
f for f in os.listdir(f"{input_file}") if f.endswith(".wav")
]
with open("./esd.list", "w", encoding="utf-8") as f:
for wav_file in tqdm(wav_files, file=SAFE_STDOUT):
file_name = os.path.basename(wav_file)
text,lang = transcribe_one(f"{input_file}"+wav_file,language)
# 使用正则表达式提取'deedee'
match = re.search(r'(^.*?)_.*?(\..*?$)', wav_file)
if match:
extracted_name = match.group(1) + match.group(2)
else:
print("No match found")
extracted_name = "sample"
if lang == "ja":
language_id = "JA"
elif lang == "en":
language_id = "EN"
elif lang == "zh":
language_id = "ZH"
elif lang == "yue":
language_id = "YUE"
elif lang == "ko":
language_id = "KO"
f.write(file_pos+f"{file_name}|{extracted_name.replace('.wav','')}|{language_id}|{text}\n")
f.flush()
sys.exit(0)