
DRAFT
MontePy: a Python library for reading, editing, and1

writing MCNP input files.2

Micah D. Gale 1¶, Travis J. Labossiere-Hickman 1, Brenna A. Carbno1,3

and Andrew J. Bascom 1
4

1 Idaho National Laboratory, USA ¶ Corresponding author5

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary6

The Monte Carlo N-Particle (MCNP) radiation transport code is a highly capable and accurate7

code with a long legacy. MCNP uses the Monte Carlo simulation process to simulate the8

path of particles (e.g., neutrons, photons, charged particles, etc.), and their interaction with9

materials. It is widely used in nuclear engineering, high-energy physics, and other fields. Its10

origins in the mid-twentieth century predate many modern software conventions. MCNP users11

provide an input file to MCNP, which it then uses to create an internal representation of12

the simulation problem. These input files originally had to be stored as punchcard decks,13

and the user manual still uses the terminology of cards and decks, despite moving beyond14

punchcards. MCNP predates nearly all modern human readable markup or data serialization15

languages, such as the extensible Markup Language (XML), the Standard Generalized Markup16

Language (SGML), YAML (YAML Ain’t Markup Language), and Javascript Object Notation17

(JSON). Due to this, MCNP uses an entirely custom defined syntax language for its input,18

making off-the-shelf libraries for XML, YAML, and JSON impossible to use for scripting various19

operations on MCNP input files (Kulesza et al., 2022).20

Syntax Layer: handles comments, multi-line, etc

Abstraction

Semantic/OOP

Cell

surface

Material …

Figure 1: Diagram of how the different models of MontePy interact to form an Object Oriented
Programming (OOP) interface.

Gale et al. (2025). MontePy: a Python library for reading, editing, and writing MCNP input files. Journal of Open Source Software, ¿VOL?(¿ISSUE?),
¿PAGE? https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0001-6451-4818
https://orcid.org/0000-0003-0742-3404
https://orcid.org/0009-0005-6691-5128
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft

DRAFT
MCNP simulation problems use three-dimensional constructive solid geometry (CSG). The21

simulation is composed of a series of cells, representing spatial regions in the modeled geometry.22

These cells have assigned densities, and are linked to a material definition. These materials23

define the relative amounts of different isotopes in the material, and can be shared between24

cells. The cell geometry in CSG is defined by a series of Boolean set operations of geometry25

primitives, which are usually quadratic surfaces. For instance, a cylindrical nuclear fuel pellet’s26

geometry could be defined as the inside of an axially infinite cylinder with a specified radius,27

and above a bottom plane, and below a top plane.28

MontePy is a Python library for reading, editing, and writing these MCNP input files. It provides29

an object-oriented programming (OOP) interface for interacting with the simulation problems.30

MontePy does not perform any of its own radiation transport, or neutronics calculations.31

MontePy uses a syntax parser built on top of the Python package for parsers: SLY (Beazly &32

contributors, 2016). This parser builds a concrete syntax tree of the input file. An example33

syntax tree for defining a cell is given in Figure 2. This allows MontePy to parse the input file34

without losing any information or formatting. The MontePy objects that represent MCNP35

objects such as: cells, surfaces, materials, etc., crawl through this syntax tree and update36

their internal values to reflect this tree. These attributes will then be exposed to the user as37

properties. Once a file has been fully read in, all objects will be linked together. The interaction38

between the components of MontePy are shown in Figure 1. For instance a cell object will39

be given a “pointer” to the material object that it is defined to be filled with. When the40

user wants to write their modified model to file this process will be reversed. The objects will41

crawl their syntax tree as necessary to ensure it has the correct value. If a value has changed,42

MontePy will try to match the numerical precision that the user used initially in the input file.43

123456 654321 -10.02 -1 2 3 4 imp:n=1.0 imp:p 0.5 fill = 10 (0 10.0 20.0)

Cell Tree

Cell number

123456
Material Geometry Properties

Mat number

654321
Density*

10.02 (-)

-1 &

+2 &

+3 & +4

Imp:n …

1.0

Cell # material # density geometry key-value parameters

Figure 2: The syntax for defining a cell for MCNP, and the syntax tree that MontePy will extract from it.

MontePy is focused on using good software practices to simplify adoption as much as possible.44

MontePy uses industry standard continuous integration and continuous deployment (CI/CD)45

tools to test all changes, and ensure changes meet the standards of MontePy. Currently46

the test suite has over 380 tests, which have over 98% code coverage of the source code.47

This practice significantly reduces the risk of regressions and the introduction of new bugs.48

All software changes must be reviewed by at least one person prior to being accepted for49

deployment to users. MontePy is also written only in Python and only has two dependencies.50

This was intentionally done to make it as easy as possible for a new user to install it, which51

they can do with a single command. The decision to only use Python was made to facilitate52

Gale et al. (2025). MontePy: a Python library for reading, editing, and writing MCNP input files. Journal of Open Source Software, ¿VOL?(¿ISSUE?),
¿PAGE? https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft

DRAFT
the creation of a user community. All end-users should know how to write some Python, so53

any user could, with some guidance, become a developer.54

Statement of Need55

MCNP is a popular Monte Carlo radiation transport code. It has nearly unmatched capabilities56

in its physics modeling, and its support for 37 different particle types (Kulesza et al., 2022).57

However, due to the fact that MCNP uses a custom syntax, it requires referencing other58

objects (e.g., a cell referencing a material) by their number, and tendency of radiation transport59

simulations to be complex, working with MCNP input files can be tedious and error-prone.60

This issue is well suited for automation.61

Current packages do exist for automating the generation of new MCNP input files. One such62

package is the Advanced Reactor Modeling Interface (ARMI). ARMI is a modular open-source63

framework for coupling multiple simulation codes. A closed-source MCNP plugin for ARMI64

does exist. ARMI is more focused on making its internal model of a nuclear reactor fit in an65

MCNP input file, rather than being able to open and parse an arbitrary MCNP model (Touran66

et al., 2017). This is indicative of the various tools that have been created for working with67

MCNP in the past. They tend to be purpose-built for a specific problem, or class of problems,68

and are not easily generalized. MCNP input models could also be created with a templating69

engine, like the Workflow Template and Toolkit System (WATTS) (P. K. Romano et al., 2022).70

This though requires the user to create a template from the set of problems they plan to model.71

This would be well suited for a sensitivity study where many very similar simulations are run,72

but not for making large edits to an input file or making a single problem from scratch. PyNE:73

the Nuclear Engineering Toolkit offers some similar capabilities for input generation.74

PyNE can create MCNP input files for specific features and extract some data from MCNP75

output files. However, its full capabilities extend far beyond interfacing with MCNP. PyNE can76

simplify material creations, analyses of cross section data, transmutations of complex systems,77

and interfacing with other common nuclear engineering software and data formats (?). PyNE78

is an excellent companion tool to MontePy.79

All of these previous solutions were incomplete in one way or another. Neither were able to80

read in a previous MCNP input file and edit it in a general manner. In addition, WATTS does81

not have any fundamental understanding of what fields are for a user provided MCNP template.82

The same is true for a myriad of application-specific industry tools that are tailor-made for83

specific problems. There is a clear need for an object-oriented interface to these files that can84

both “understand” the input, and read and edit the files. This sort of model interface has85

been present for years in the Python API for the Monte Carlo code, OpenMC (P. Romano86

et al., 2015)‘. Since its incorporation in the code, this interface has become by far the most87

dominant user interface for that code, as opposed to manual editing of the XML input files.88

Ideally this object-oriented interface should be in Python as it is such a prolific language,89

especially among novice and intermediate programmers. A few such libraries do exist: MCNPy,90

mckit, and others discussed later. MCNPy is a Python wrapper for a java engine that can91

read, edit, and write MCNP input files. It can “understand” MCNP inputs, or as the authors92

put it, it has a “metamodel” for MCNP (Kowal et al., 2023). Having a library written in93

another language than what the user is used to, introduces another barrier to converting a94

user into a developer. This could present a serious barrier to developing a thriving user and95

developer community for this open source software. It does not appear that MCNPy has any96

automated testing suite at this time, and so there is no guarantee that it will actually perform97

the functions it claims to. In addition it imposes additional formatting requirements on an98

input file that is read, beyond what MCNP requires (Kulesza et al., 2022). Mckit on the other99

hand is written primarily in python, and does use automated testing. Unfortunately the existing100

documentation is difficult to acces, incomplete, and primarily in russian. It was difficult to101

assess the state of this project due to this. It appeared that mckit is more of a functional102

Gale et al. (2025). MontePy: a Python library for reading, editing, and writing MCNP input files. Journal of Open Source Software, ¿VOL?(¿ISSUE?),
¿PAGE? https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft

DRAFT
programming style library, rather than an object-oriented programming style (Rodionov &103

Portnov, 2024). MontePy provides all of these listed capabilities, while also being written104

purely in Python, and avoiding this barrier to forming a thriving open source community.105

TODO PyNE, mckit106

The authors did try to find as many Open Source Python libraries that had at least some107

overlap with MontePy. This was not an exhaustive seach, but should cover many such libraries.108

Given the number of libraries found the following lists will simply be an attempt to categorize109

these libraries.110

The first group of libraries are those which attempt to have a read, edit, write capability for111

MCNP input files. These all do not fully parse the inputs as they do not use context-free112

parsers, and are generally feature limited, and may lack sufficient documentation. These libaries113

are:114

• numjuggler (Travleev et al., 2022)115

• MCNP Input Reader (Mariano, 2022)116

• mctools (Laghi, 2023)117

• mc-tools (Batkov et al., 2024)118

• PyMCNP (Persaud et al., 2024)119

There are even more tools that specialize in input templating and generation. These are clearly120

not complete alternatives as they lack the ability to read MCNP input files. These libraries are:121

• CardSharpForMCNP (Pacific Northwest National Laboratory, 2025)122

• wig (Hagen, 2021)123

• Plugin-MCNP [for Funz] (Richet, 2023)124

• GDNP (niess, 2018)125

• map-stp (Portnov, 2024)126

• MCNP Input Generator (ikarino, 2021)127

• Neutronics Material Maker (Shimwell et al., 2024)128

There are also libraries that specialize in parsing an MCNP input file in order to convert the129

model to be an input for another program:130

• MCNP Conversion tools for OpenMC (Paul Romano et al., 2024)131

• t4_geom_convert (Mancusi, 2024)132

There are also libraries that have to parse MCNP inputs to some extent as they provide MCNP133

syntax highlighting support for various text editors:134

• MCNP-syntax-highlighting (Turkoglu, 2018)135

• NPP_MCNP_Plugin (Marcinkevicius, 2025)136

• vscode_mcnp (Repositony, 2024)137

Finally there are the libraries that have been purpose built for working with and automating a138

specific type of MCNP models:139

• BEMP_Thesis (Galdon, 2024)140

• MCNP6-HPGe_Detector_simulation (Hung, 2023)141

• rodcal-mcnp (Park, 2021)142

MontePy is currently targeting two primary communities. First, Nuclear Engineers with143

moderate Python experience as a user base. The goal is to get these users to use the interface144

to remove the tedium from their work when they need to make some modification to their145

model. In addition, these users can use MontePy to quickly interogate, and retrieve information146

from their models in order to validate them, or to just answer some questions they had about147

them. The other target user is the Nuclear Engineer developer, making automation tools.148

Many nuclear engineering departments have a large MCNP model that they need to frequently149

update. For instance, the authors of MontePy use a model of the Advanced Test Reactor150

Gale et al. (2025). MontePy: a Python library for reading, editing, and writing MCNP input files. Journal of Open Source Software, ¿VOL?(¿ISSUE?),
¿PAGE? https://doi.org/10.xxxxxx/draft.

4

https://doi.org/10.xxxxxx/draft

DRAFT
(Campbell et al., 2021) for their work on a daily basis. This large and complex model needs to151

be updated every reactor cycle with the new fuel compositions, the specific control element152

configurations, etc. Their department does have an automation tool that relies heavily on153

template-like use of regular expressions. This tool will fail to run if the model is modified in a154

way that is allowed by MCNP, but which the tool cannot handle. This tool is a prime example155

of a real-life case where MontePy could be applied to improve the workflow and increase156

robustness.157

Status of MontePy158

As of MontePy 0.5.4 many of the most commonly used MCNP inputs (cards) are supported.159

These include:160

• Cells, which are the base of an MCNP geometry and contain a material and a CSG161

geometry definition.162

– Cell modifier inputs:163

∗ IMP inputs which specify a cell’s importance for variance reduction, and other164

uses.165

∗ FILL, LAT, and U inputs which are used for defining universes, and filling cells166

with those universes.167

∗ VOL input which specifies the volume for a cell168

• Surface inputs, which are used to define the primitive surfaces used. All surfaces are169

supported at a basic level. The following surface types are supported in a semantic way170

where the constants are tied to their geometric meaning:171

– PX, PY, and PZ surfaces, which are planes perpendicular to a specific axis.172

– CX, CY, and CZ surfaces, which are cylinders parallel to a specific axis and centered173

at the origin.174

– C\X, C\Y, and C\Z surfaces, which are cylinders parallel to a specific axis, and not175

centered at the origin.176

• M inputs, which define the composition of a specific material.177

• MT inputs, which define a thermal scattering law to use for a specific material.178

• mode inputs, which define which particle types to run in the simulation.179

• TR inputs, which define a geometry transformation.180

MontePy does not support reading output files, and there are no current plans to add such181

support. First, MCNP is export controlled software, with a publicly released manual. MontePy182

was based solely on this manual. It does not document the formatting of the MCNP output183

files, so this feature is not included. Secondly, there is already an Open-Source tool available184

to read some MCNP output files, MCNPtools. This is a Python wrapper for a C++ tool to185

read meshtal, and mctal files output by MCNP (Bates et al., 2022). So for the time being, to186

avoid scope creep, the core MontePy developers will not be adding support for output files to187

allow development to focus on supporting more input features.188

Future Work189

MCNP supports over 140 different inputs (cards). For almost all of the remaining input types190

that MontePy doesn’t support the information from the input is still available to the user.191

The next planned release at the time of publication is version 1.0.0. This new release is192

significant redesign of the material definition interface, making the material interface much193

more user-friendly. The exceptions are those inputs with syntax that conflicts with the rest194

of MCNP, which need to be handled specifically on their own. Adding more object-oriented195

support for all of these inputs is an ongoing project. Development is primarily prioritized by196

most commonly used inputs. Finally, MontePy and OpenMC’s Python interface have many197

similar features. Harmonizing MontePy and OpenMC to be intercompatible would unlock198

Gale et al. (2025). MontePy: a Python library for reading, editing, and writing MCNP input files. Journal of Open Source Software, ¿VOL?(¿ISSUE?),
¿PAGE? https://doi.org/10.xxxxxx/draft.

5

https://doi.org/10.xxxxxx/draft

DRAFT
a whole new set of possibilities. It would then be possible to translate OpenMC models to199

MCNP, and vice versa, which would be ideal for code-to-code comparisons.200

Acknowledgments201

Work supported through the Advanced Fuels Campaign (AFC) under DOE Idaho Operations202

Office Contract DE-AC07-05ID14517. The authors wish to thank the U.S. Department of203

Energy Office of Isotope R&D and Production for their vital and continued support and funding204

of the Co-60 program at INL under Contract No. DE-AC07-05ID14517. Co-60 is sold by the205

National Isotope Development Center (NIDC). Quotes on Co-60 can be obtained from NIDC206

at www.isotopes.gov/products/cobalt. This research made use of Idaho National Laboratory’s207

High Performance Computing systems located at the Collaborative Computing Center and208

supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear209

Science User Facilities under Contract No. DE-AC07-05ID14517.210

References211

Bates, C. R., Bolding, S. R., Josey, C. J., Kulesza, J. A., Solomon, C. J., Jr., & Zukaitis, A. J.212

(2022). The MCNPTools package: Installation and use (Report LA-UR-22-28935). Los213

Alamos National Laboratory. https://doi.org/10.2172/1884737214

Batkov, K., Borghi, N., Furutaka, K., Ansell, S., & Vezhlev, E. (2024). Mc-tools (Version215

1.0.post1). https://github.com/kbat/mc-tools216

Beazly, D., & contributors, S. (2016). SLY (sly lex yacc) [Online Multimedia]. https:217

//sly.readthedocs.io/en/latest/218

Campbell, J., Marshall, F., & Longhurst, G. (2021). Advanced test reactor user guide (Report219

INL/EXT-21-64328). Idaho National Laboratory. https://doi.org/10.2172/1826354220

Galdon, M. (2024). BEMP_thesis (Version 1.0.0). https://github.com/mgaldon17/BEMP_221

Thesis222

Hagen, A. (2021). Wig. https://github.com/alexhagen/wig223

Hung, B. T. (2023). MCNP6-HPGE_detector_simulation. https://github.com/hungbt1908/224

MCNP6-HPGE_Detector_Simulation225

ikarino. (2021). MCNP input generator. https://github.com/ikarino/mcnp_input_generator226

Kowal, P. J., Blake, C. E., Dominesey, K. A., Lefebvre, R. A., Brown, F. B., & Ji, W.227

(2023). Enhancing monte carlo workflows for nuclear reactor analysis with metamodel-228

driven modeling [Journal Article]. Nuclear Science and Engineering, 197(8). https:229

//doi.org/10.1080/00295639.2022.2153617230

Kulesza, J., Adams, T., Armstrong, J. C., Bolding, S. R., Brown, F. B., Bull, J. S., Burke, T. P.,231

Clark, A. R., Forster, R. A. I., Giron, J. F., Grieve, T. S., Josey, C. J., Martz, R. L., McKinney,232

G. W., Pearson, E. J., Rising, M. E., Solomon, C. J. Jr., Swaminarayan, S., Trahan, T. J.,233

… Zukaitis, A. J. (2022). MCNP code version 6.3.0 theory & user manual (Report LA-UR-234

22-30006, Rev. 1). Los Alamos National Laboratory. https://doi.org/10.2172/1889957235

Laghi, D. (2023). Mctools. https://github.com/dodu94/mctools236

Mancusi, D. (2024). t4_geom_convert (Version 1.1.2). https://github.com/arekfu/t4_geom_237

convert238

Marcinkevicius, B. (2025). NPP_MCNP_plugin. https://github.com/kordusas/npp_mcnp_239

plugin240

Mariano, G. (2022). MCNP input reader (Version 0.2.1). https://github.com/241

Gale et al. (2025). MontePy: a Python library for reading, editing, and writing MCNP input files. Journal of Open Source Software, ¿VOL?(¿ISSUE?),
¿PAGE? https://doi.org/10.xxxxxx/draft.

6

https://www.isotopes.gov/products/cobalt
https://doi.org/10.2172/1884737
https://github.com/kbat/mc-tools
https://sly.readthedocs.io/en/latest/
https://sly.readthedocs.io/en/latest/
https://sly.readthedocs.io/en/latest/
https://doi.org/10.2172/1826354
https://github.com/mgaldon17/BEMP_Thesis
https://github.com/mgaldon17/BEMP_Thesis
https://github.com/mgaldon17/BEMP_Thesis
https://github.com/alexhagen/wig
https://github.com/hungbt1908/MCNP6-HPGE_Detector_Simulation
https://github.com/hungbt1908/MCNP6-HPGE_Detector_Simulation
https://github.com/hungbt1908/MCNP6-HPGE_Detector_Simulation
https://github.com/ikarino/mcnp_input_generator
https://doi.org/10.1080/00295639.2022.2153617
https://doi.org/10.1080/00295639.2022.2153617
https://doi.org/10.1080/00295639.2022.2153617
https://doi.org/10.2172/1889957
https://github.com/dodu94/mctools
https://github.com/arekfu/t4_geom_convert
https://github.com/arekfu/t4_geom_convert
https://github.com/arekfu/t4_geom_convert
https://github.com/kordusas/npp_mcnp_plugin
https://github.com/kordusas/npp_mcnp_plugin
https://github.com/kordusas/npp_mcnp_plugin
https://github.com/ENEA-Fusion-Neutronics/MCNP-Input-Reader
https://github.com/ENEA-Fusion-Neutronics/MCNP-Input-Reader
https://github.com/ENEA-Fusion-Neutronics/MCNP-Input-Reader
https://doi.org/10.xxxxxx/draft

DRAFT
ENEA-Fusion-Neutronics/MCNP-Input-Reader242

niess. (2018). GDNP. https://github.com/niess/gdnp243

Pacific Northwest National Laboratory. (2025). CardSharpForMCNP (Version 1.4.2). https:244

//github.com/pnnl/CardSharpForMCNP245

Park, P. (2021). Rodcal-mcnp. https://github.com/patrickpark910/rodcal-mcnp246

Persaud, A., Unzueta, M. A., Surry, E. K., & Parsons, A. M. (2024). Python-based software247

tools for MCNP. 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference248

(MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1–1. https:249

//doi.org/10.1109/NSS/MIC/RTSD57108.2024.10655039250

Portnov, D. (2024). Map-stp. https://github.com/MC-kit/map-stp251

Repositony. (2024). Vscode_mcnp. https://github.com/repositony/vscode_mcnp252

Richet, Y. (2023). Funz plugin-MCNP (Version 1.16-0). https://github.com/Funz/253

plugin-MCNP254

Rodionov, R., & Portnov, D. (2024). Mckit (Version 0.8.3). https://github.com/MC-kit/mckit255

Romano, P. K., Stauff, N. E., Ooi, Z. J., Miao, Y., Lund, A., & Zou, L. (2022). WATTS:256

Workflow and template toolkit for simulation [Journal Article]. Journal of Open Source257

Software, 7 (79). https://doi.org/10.21105/joss.04735258

Romano, P., Horelik, N. E., Herman, B. R., Nelson, A. G., Forget, B., & Smith, K. (2015).259

OpenMC: A state-of-the-art monte carlo code for research and development [Journal260

Article]. Annals of Nuclear Energy, 82. https://doi.org/10.1016/j.anucene.2014.07.048261

Romano, Paul, Li, K., Shriwise, P., & Valderrama, J. (2024). MCNP conversion tools for262

OpenMC. https://github.com/openmc-dev/openmc_mcnp_adapter263

Shimwell, J., Billingsley, J., Buendia, C., & Neutronics Material Material Contributors. (2024).264

Neutronics material maker (Version 1.2.1). https://github.com/fusion-energy/neutronics_265

material_maker266

Touran, N., Gilleland, J., Malmgren, G., Whitmer, C., & Gates, W. H. (2017). Computational267

tools for the integrated design of advanced nuclear reactors [Journal Article]. Engineering,268

3(4). https://doi.org/10.1016/J.ENG.2017.04.016269

Travleev, A., Previti, A., & Portnov, D. (2022). Numjuggler (Version 2.42.36). https:270

//github.com/travleev/numjuggler271

Turkoglu, D. (2018). MCNP-syntax-highlighting. https://github.com/danyalturkoglu/272

MCNP-syntax-highlighting273

Gale et al. (2025). MontePy: a Python library for reading, editing, and writing MCNP input files. Journal of Open Source Software, ¿VOL?(¿ISSUE?),
¿PAGE? https://doi.org/10.xxxxxx/draft.

7

https://github.com/ENEA-Fusion-Neutronics/MCNP-Input-Reader
https://github.com/ENEA-Fusion-Neutronics/MCNP-Input-Reader
https://github.com/ENEA-Fusion-Neutronics/MCNP-Input-Reader
https://github.com/ENEA-Fusion-Neutronics/MCNP-Input-Reader
https://github.com/niess/gdnp
https://github.com/pnnl/CardSharpForMCNP
https://github.com/pnnl/CardSharpForMCNP
https://github.com/pnnl/CardSharpForMCNP
https://github.com/patrickpark910/rodcal-mcnp
https://doi.org/10.1109/NSS/MIC/RTSD57108.2024.10655039
https://doi.org/10.1109/NSS/MIC/RTSD57108.2024.10655039
https://doi.org/10.1109/NSS/MIC/RTSD57108.2024.10655039
https://github.com/MC-kit/map-stp
https://github.com/repositony/vscode_mcnp
https://github.com/Funz/plugin-MCNP
https://github.com/Funz/plugin-MCNP
https://github.com/Funz/plugin-MCNP
https://github.com/MC-kit/mckit
https://doi.org/10.21105/joss.04735
https://doi.org/10.1016/j.anucene.2014.07.048
https://github.com/openmc-dev/openmc_mcnp_adapter
https://github.com/fusion-energy/neutronics_material_maker
https://github.com/fusion-energy/neutronics_material_maker
https://github.com/fusion-energy/neutronics_material_maker
https://doi.org/10.1016/J.ENG.2017.04.016
https://github.com/travleev/numjuggler
https://github.com/travleev/numjuggler
https://github.com/travleev/numjuggler
https://github.com/danyalturkoglu/MCNP-syntax-highlighting
https://github.com/danyalturkoglu/MCNP-syntax-highlighting
https://github.com/danyalturkoglu/MCNP-syntax-highlighting
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of Need
	Status of MontePy
	Future Work
	Acknowledgments
	References

