Skip to content

Files

Latest commit

70ec623 · Aug 11, 2018

History

History

complex-number

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Aug 11, 2018
Aug 11, 2018
Aug 11, 2018

Complex Number

A complex number is a number that can be expressed in the form a + b * i, where a and b are real numbers, and i is a solution of the equation x^2 = −1. Because no real number satisfies this equation, i is called an imaginary number. For the complex number a + b * i, a is called the real part, and b is called the imaginary part.

Complex Number

A Complex Number is a combination of a Real Number and an Imaginary Number:

Complex Number

Geometrically, complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a + b * i can be identified with the point (a, b) in the complex plane.

A complex number whose real part is zero is said to be purely imaginary; the points for these numbers lie on the vertical axis of the complex plane. A complex number whose imaginary part is zero can be viewed as a real number; its point lies on the horizontal axis of the complex plane.

Complex Number Real Part Imaginary Part
3 + 2i 3 2
5 5 0 Purely Real
−6i 0 -6 Purely Imaginary

A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i satisfies i^2 = −1.

Complex Number

Complex does not mean complicated. It means the two types of numbers, real and imaginary, together form a complex, just like a building complex (buildings joined together).

Basic Operations

Adding

To add two complex numbers we add each part separately:

(a + b * i) + (c + d * i) = (a + c) + (b + d) * i

Example

(3 + 5i) + (4 − 3i) = (3 + 4) + (5 − 3)i = 7 + 2i

On complex plane the adding operation will look like the following:

Complex Addition

Subtracting

To subtract two complex numbers we subtract each part separately:

(a + b * i) - (c + d * i) = (a - c) + (b - d) * i

Example

(3 + 5i) - (4 − 3i) = (3 - 4) + (5 + 3)i = -1 + 8i

Multiplying

To multiply complex numbers each part of the first complex number gets multiplied by each part of the second complex number:

Just use "FOIL", which stands for "Firsts, Outers, Inners, Lasts" ( see Binomial Multiplication for more details):

Complex Multiplication

  • Firsts: a × c
  • Outers: a × di
  • Inners: bi × c
  • Lasts: bi × di

In general it looks like this:

(a + bi)(c + di) = ac + adi + bci + bdi^2

But there is also a quicker way!

Use this rule:

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

Example

(3 + 2i)(1 + 7i) 
= 3×1 + 3×7i + 2i×1+ 2i×7i
= 3 + 21i + 2i + 14i^2
= 3 + 21i + 2i − 14   (because i^2 = −1)
= −11 + 23i
(3 + 2i)(1 + 7i) = (3×1 − 2×7) + (3×7 + 2×1)i = −11 + 23i

Conjugates

We will need to know about conjugates in a minute!

A conjugate is where we change the sign in the middle like this:

Complex Conjugate

A conjugate is often written with a bar over it:

______
5 − 3i   =   5 + 3i

On the complex plane the conjugate number will be mirrored against real axes.

Complex Conjugate

Dividing

The conjugate is used to help complex division.

The trick is to multiply both top and bottom by the conjugate of the bottom.

Example

2 + 3i
------
4 − 5i

Multiply top and bottom by the conjugate of 4 − 5i:

  (2 + 3i) * (4 + 5i)   8 + 10i + 12i + 15i^2
= ------------------- = ----------------------
  (4 − 5i) * (4 + 5i)   16 + 20i − 20i − 25i^2

Now remember that i^2 = −1, so:

  8 + 10i + 12i − 15    −7 + 22i   −7   22
= ------------------- = -------- = -- + -- * i
  16 + 20i − 20i + 25      41      41   41

There is a faster way though.

In the previous example, what happened on the bottom was interesting:

(4 − 5i)(4 + 5i) = 16 + 20i − 20i − 25i

The middle terms (20i − 20i) cancel out! Also i^2 = −1 so we end up with this:

(4 − 5i)(4 + 5i) = 4^2 + 5^2

Which is really quite a simple result. The general rule is:

(a + bi)(a − bi) = a^2 + b^2

References