-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathops.py
1067 lines (833 loc) · 36.1 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import division
import math
import tensorflow as tf
from mi_gru_cell import MiGRUCell
from mi_lstm_cell import MiLSTMCell
from config import config
eps = 1e-20
inf = 1e30
####################################### variables ########################################
'''
Initializes a weight matrix variable given a shape and a name.
Uses random_normal initialization if 1d, otherwise uses xavier.
'''
def getWeight(shape, name = ""):
with tf.variable_scope("weights"):
initializer = tf.contrib.layers.xavier_initializer()
# if len(shape) == 1: # good?
# initializer = tf.random_normal_initializer()
W = tf.get_variable("weight" + name, shape = shape, initializer = initializer)
return W
'''
Initializes a weight matrix variable given a shape and a name. Uses xavier
'''
def getKernel(shape, name = ""):
with tf.variable_scope("kernels"):
initializer = tf.contrib.layers.xavier_initializer()
W = tf.get_variable("kernel" + name, shape = shape, initializer = initializer)
return W
'''
Initializes a bias variable given a shape and a name.
'''
def getBias(shape, name = ""):
with tf.variable_scope("biases"):
initializer = tf.zeros_initializer()
b = tf.get_variable("bias" + name, shape = shape, initializer = initializer)
return b
######################################### basics #########################################
'''
Multiplies input inp of any depth by a 2d weight matrix.
'''
# switch with conv 1?
def multiply(inp, W):
inDim = tf.shape(W)[0]
outDim = tf.shape(W)[1]
newDims = tf.concat([tf.shape(inp)[:-1], tf.fill((1,), outDim)], axis = 0)
inp = tf.reshape(inp, (-1, inDim))
output = tf.matmul(inp, W)
output = tf.reshape(output, newDims)
return output
'''
Concatenates x and y. Support broadcasting.
Optionally concatenate multiplication of x * y
'''
def concat(x, y, dim, mul = False, extendY = False):
if extendY:
y = tf.expand_dims(y, axis = -2)
# broadcasting to have the same shape
y = tf.zeros_like(x) + y
if mul:
out = tf.concat([x, y, x * y], axis = -1)
dim *= 3
else:
out = tf.concat([x, y], axis = -1)
dim *= 2
return out, dim
'''
Adds L2 regularization for weight and kernel variables.
'''
# add l2 in the tf way
def L2RegularizationOp(l2 = None):
if l2 is None:
l2 = config.l2
l2Loss = 0
names = ["weight", "kernel"]
for var in tf.trainable_variables():
if any((name in var.name.lower()) for name in names):
l2Loss += tf.nn.l2_loss(var)
return l2 * l2Loss
######################################### attention #########################################
'''
Transform vectors to scalar logits.
Args:
interactions: input vectors
[batchSize, N, dim]
dim: dimension of input vectors
sumMod: LIN for linear transformation to scalars.
SUM to sum up vectors entries to get scalar logit.
dropout: dropout value over inputs (for linear case)
Return matching scalar for each interaction.
[batchSize, N]
'''
sumMod = ["LIN", "SUM"]
def inter2logits(interactions, dim, sumMod = "LIN", dropout = 1.0, name = "", reuse = None):
with tf.variable_scope("inter2logits" + name, reuse = reuse):
if sumMod == "SUM":
logits = tf.reduce_sum(interactions, axis = -1)
else: # "LIN"
logits = linear(interactions, dim, 1, dropout = dropout, name = "logits")
return logits
'''
Transforms vectors to probability distribution.
Calls inter2logits and then softmax over these.
Args:
interactions: input vectors
[batchSize, N, dim]
dim: dimension of input vectors
sumMod: LIN for linear transformation to scalars.
SUM to sum up vectors entries to get scalar logit.
dropout: dropout value over inputs (for linear case)
Return attention distribution over interactions.
[batchSize, N]
'''
def inter2att(interactions, dim, dropout = 1.0, name = "", reuse = None):
with tf.variable_scope("inter2att" + name, reuse = reuse):
logits = inter2logits(interactions, dim, dropout = dropout)
attention = tf.nn.softmax(logits)
return attention
'''
Sums up features using attention distribution to get a weighted average over them.
'''
def att2Smry(attention, features):
return tf.reduce_sum(tf.expand_dims(attention, axis = -1) * features, axis = -2)
####################################### activations ########################################
'''
Performs a variant of ReLU based on config.relu
PRM for PReLU
ELU for ELU
LKY for Leaky ReLU
otherwise, standard ReLU
'''
def relu(inp):
if config.relu == "PRM":
with tf.variable_scope(None, default_name = "prelu"):
alpha = tf.get_variable("alpha", shape = inp.get_shape()[-1],
initializer = tf.constant_initializer(0.25))
pos = tf.nn.relu(inp)
neg = - (alpha * tf.nn.relu(-inp))
output = pos + neg
elif config.relu == "ELU":
output = tf.nn.elu(inp)
# elif config.relu == "SELU":
# output = tf.nn.selu(inp)
elif config.relu == "LKY":
# output = tf.nn.leaky_relu(inp, config.reluAlpha)
output = tf.maximum(inp, config.reluAlpha * inp)
elif config.relu == "STD": # STD
output = tf.nn.relu(inp)
return output
activations = {
"NON": tf.identity, # lambda inp: inp
"TANH": tf.tanh,
"SIGMOID": tf.sigmoid,
"RELU": relu,
"ELU": tf.nn.elu
}
# Sample from Gumbel(0, 1)
def sampleGumbel(shape):
U = tf.random_uniform(shape, minval = 0, maxval = 1)
return -tf.log(-tf.log(U + eps) + eps)
# Draw a sample from the Gumbel-Softmax distribution
def gumbelSoftmaxSample(logits, temperature):
y = logits + sampleGumbel(tf.shape(logits))
return tf.nn.softmax(y / temperature)
def gumbelSoftmax(logits, temperature, train): # hard = False
# Sample from the Gumbel-Softmax distribution and optionally discretize.
# Args:
# logits: [batch_size, n_class] unnormalized log-probs
# temperature: non-negative scalar
# hard: if True, take argmax, but differentiate w.r.t. soft sample y
# Returns:
# [batch_size, n_class] sample from the Gumbel-Softmax distribution.
# If hard=True, then the returned sample will be one-hot, otherwise it will
# be a probabilitiy distribution that sums to 1 across classes
y = gumbelSoftmaxSample(logits, temperature)
# k = tf.shape(logits)[-1]
# yHard = tf.cast(tf.one_hot(tf.argmax(y,1),k), y.dtype)
yHard = tf.cast(tf.equal(y, tf.reduce_max(y, 1, keep_dims = True)), y.dtype)
yNew = tf.stop_gradient(yHard - y) + y
if config.gumbelSoftmaxBoth:
return y
if config.gumbelArgmaxBoth:
return yNew
ret = tf.cond(train, lambda: y, lambda: yNew)
return ret
def softmaxDiscrete(logits, temperature, train):
if config.gumbelSoftmax:
return gumbelSoftmax(logits, temperature = temperature, train = train)
else:
return tf.nn.softmax(logits)
def parametricDropout(name, train):
var = tf.get_variable("varDp" + name, shape = (), initializer = tf.constant_initializer(2),
dtype = tf.float32)
dropout = tf.cond(train, lambda: tf.sigmoid(var), lambda: 1.0)
return dropout
###################################### sequence helpers ######################################
'''
Casts exponential mask over a sequence with sequence length.
Used to prepare logits before softmax.
'''
def expMask(seq, seqLength):
maxLength = tf.shape(seq)[-1]
mask = (1 - tf.cast(tf.sequence_mask(seqLength, maxLength), tf.float32)) * (-inf)
masked = seq + mask
return masked
'''
Computes seq2seq loss between logits and target sequences, with given lengths.
'''
def seq2SeqLoss(logits, targets, lengths):
mask = tf.sequence_mask(lengths, maxlen = tf.shape(targets)[1])
loss = tf.contrib.seq2seq.sequence_loss(logits, targets, tf.to_float(mask))
return loss
'''
Computes seq2seq loss between logits and target sequences, with given lengths.
acc1: accuracy per symbol
acc2: accuracy per sequence
'''
def seq2seqAcc(preds, targets, lengths):
mask = tf.sequence_mask(lengths, maxlen = tf.shape(targets)[1])
corrects = tf.logical_and(tf.equal(preds, targets), mask)
numCorrects = tf.reduce_sum(tf.to_int32(corrects), axis = 1)
acc1 = tf.to_float(numCorrects) / (tf.to_float(lengths) + eps) # add small eps instead?
acc1 = tf.reduce_mean(acc1)
acc2 = tf.to_float(tf.equal(numCorrects, lengths))
acc2 = tf.reduce_mean(acc2)
return acc1, acc2
########################################### linear ###########################################
'''
linear transformation.
Args:
inp: input to transform
inDim: input dimension
outDim: output dimension
dropout: dropout over input
batchNorm: if not None, applies batch normalization to inputs
addBias: True to add bias
bias: initial bias value
act: if not None, activation to use after linear transformation
actLayer: if True and act is not None, applies another linear transformation on top of previous
actDropout: dropout to apply in the optional second linear transformation
retVars: if True, return parameters (weight and bias)
Returns linear transformation result.
'''
# batchNorm = {"decay": float, "train": Tensor}
# actLayer: if activation is not non, stack another linear layer
# maybe change naming scheme such that if name = "" than use it as default_name (-->unique?)
def linear(inp, inDim, outDim, dropout = 1.0,
batchNorm = None, addBias = True, bias = 0.0,
act = "NON", actLayer = True, actDropout = 1.0,
retVars = False, name = "", reuse = None):
with tf.variable_scope("linearLayer" + name, reuse = reuse):
W = getWeight((inDim, outDim) if outDim > 1 else (inDim, ))
b = getBias((outDim, ) if outDim > 1 else ()) + bias
if batchNorm is not None:
inp = tf.contrib.layers.batch_norm(inp, decay = batchNorm["decay"],
center = True, scale = True, is_training = batchNorm["train"], updates_collections = None)
# tf.layers.batch_normalization, axis -1 ?
inp = tf.nn.dropout(inp, dropout)
if outDim > 1:
output = multiply(inp, W)
else:
output = tf.reduce_sum(inp * W, axis = -1)
if addBias:
output += b
output = activations[act](output)
# good?
if act != "NON" and actLayer:
output = linear(output, outDim, outDim, dropout = actDropout, batchNorm = batchNorm,
addBias = addBias, act = "NON", actLayer = False,
name = name + "_2", reuse = reuse)
if retVars:
return (output, (W, b))
return output
'''
Computes Multi-layer feed-forward network.
Args:
features: input features
dims: list with dimensions of network.
First dimension is of the inputs, final is of the outputs.
batchNorm: if not None, applies batchNorm
dropout: dropout value to apply for each layer
act: activation to apply between layers.
NON, TANH, SIGMOID, RELU, ELU
'''
# no activation after last layer
# batchNorm = {"decay": float, "train": Tensor}
def FCLayer(features, dims, batchNorm = None, dropout = 1.0, act = "RELU"):
layersNum = len(dims) - 1
for i in range(layersNum):
features = linear(features, dims[i], dims[i+1], name = "fc_%d" % i,
batchNorm = batchNorm, dropout = dropout)
# not the last layer
if i < layersNum - 1:
features = activations[act](features)
return features
###################################### cnns ######################################
'''
Computes convolution.
Args:
inp: input features
inDim: input dimension
outDim: output dimension
batchNorm: if not None, applies batchNorm on inputs
dropout: dropout value to apply on inputs
addBias: True to add bias
kernelSize: kernel size
stride: stride size
act: activation to apply on outputs
NON, TANH, SIGMOID, RELU, ELU
'''
# batchNorm = {"decay": float, "train": Tensor, "center": bool, "scale": bool}
# collections.namedtuple("batchNorm", ("decay", "train"))
def cnn(inp, inDim, outDim, batchNorm = None, dropout = 1.0, addBias = True,
kernelSize = None, stride = 1, act = "NON", name = "", reuse = None):
with tf.variable_scope("cnnLayer" + name, reuse = reuse):
if kernelSize is None:
kernelSize = config.stemKernelSize
kernelH = kernelW = kernelSize
kernel = getKernel((kernelH, kernelW, inDim, outDim))
b = getBias((outDim, ))
if batchNorm is not None:
inp = tf.contrib.layers.batch_norm(inp, decay = batchNorm["decay"], center = batchNorm["center"],
scale = batchNorm["scale"], is_training = batchNorm["train"], updates_collections = None)
inp = tf.nn.dropout(inp, dropout)
output = tf.nn.conv2d(inp, filter = kernel, strides = [1, stride, stride, 1], padding = "SAME")
if addBias:
output += b
output = activations[act](output)
return output
'''
Computes Multi-layer convolutional network.
Args:
features: input features
dims: list with dimensions of network.
First dimension is of the inputs. Final is of the outputs.
batchNorm: if not None, applies batchNorm
dropout: dropout value to apply for each layer
kernelSizes: list of kernel sizes for each layer. Default to config.stemKernelSize
strides: list of strides for each layer. Default to 1.
act: activation to apply between layers.
NON, TANH, SIGMOID, RELU, ELU
'''
# batchNorm = {"decay": float, "train": Tensor, "center": bool, "scale": bool}
# activation after last layer
def CNNLayer(features, dims, batchNorm = None, dropout = 1.0,
kernelSizes = None, strides = None, act = "RELU"):
layersNum = len(dims) - 1
if kernelSizes is None:
kernelSizes = [config.stemKernelSize for i in range(layersNum)]
if strides is None:
strides = [1 for i in range(layersNum)]
for i in range(layersNum):
features = cnn(features, dims[i], dims[i+1], name = "cnn_%d" % i, batchNorm = batchNorm,
dropout = dropout, kernelSize = kernelSizes[i], stride = strides[i], act = act)
return features
######################################## location ########################################
'''
Computes linear positional encoding for h x w grid.
If outDim positive, casts positions to that dimension.
'''
# ignores dim
# h,w can be tensor scalars
def locationL(h, w, dim, outDim = -1, addBias = True):
dim = 2
grid = tf.stack(tf.meshgrid(tf.linspace(-config.locationBias, config.locationBias, w),
tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1)
if outDim > 0:
grid = linear(grid, dim, outDim, addBias = addBias, name = "locationL")
dim = outDim
return grid, dim
'''
Computes sin/cos positional encoding for h x w x (4*dim).
If outDim positive, casts positions to that dimension.
Based on positional encoding presented in "Attention is all you need"
'''
# dim % 4 = 0
# h,w can be tensor scalars
def locationPE(h, w, dim, outDim = -1, addBias = True):
x = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, w)), axis = -1)
y = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1)
i = tf.expand_dims(tf.to_float(tf.range(dim)), axis = 0)
peSinX = tf.sin(x / (tf.pow(10000.0, i / dim)))
peCosX = tf.cos(x / (tf.pow(10000.0, i / dim)))
peSinY = tf.sin(y / (tf.pow(10000.0, i / dim)))
peCosY = tf.cos(y / (tf.pow(10000.0, i / dim)))
peSinX = tf.tile(tf.expand_dims(peSinX, axis = 0), [h, 1, 1])
peCosX = tf.tile(tf.expand_dims(peCosX, axis = 0), [h, 1, 1])
peSinY = tf.tile(tf.expand_dims(peSinY, axis = 1), [1, w, 1])
peCosY = tf.tile(tf.expand_dims(peCosY, axis = 1), [1, w, 1])
grid = tf.concat([peSinX, peCosX, peSinY, peCosY], axis = -1)
dim *= 4
if outDim > 0:
grid = linear(grid, dim, outDim, addBias = addBias, name = "locationPE")
dim = outDim
return grid, dim
locations = {
"L": locationL,
"PE": locationPE
}
'''
Adds positional encoding to features. May ease spatial reasoning.
(although not used in the default model).
Args:
features: features to add position encoding to.
[batchSize, h, w, c]
inDim: number of features' channels
lDim: dimension for positional encodings
outDim: if positive, cast enhanced features (with positions) to that dimension
h: features' height
w: features' width
locType: L for linear encoding, PE for cos/sin based positional encoding
mod: way to add positional encoding: concatenation (CNCT), addition (ADD),
multiplication (MUL), linear transformation (LIN).
'''
mods = ["CNCT", "ADD", "LIN", "MUL"]
# if outDim = -1, then will be set based on inDim, lDim
def addLocation(features, inDim, lDim, outDim = -1, h = None, w = None,
locType = "L", mod = "CNCT", name = "", reuse = None): # h,w not needed
with tf.variable_scope("addLocation" + name, reuse = reuse):
batchSize = tf.shape(features)[0]
if h is None:
h = tf.shape(features)[1]
if w is None:
w = tf.shape(features)[2]
dim = inDim
if mod == "LIN":
if outDim < 0:
outDim = dim
grid, _ = locations[locType](h, w, lDim, outDim = outDim, addBias = False)
features = linear(features, dim, outDim, name = "LIN")
features += grid
return features, outDim
if mod == "CNCT":
grid, lDim = locations[locType](h, w, lDim)
# grid = tf.zeros_like(features) + grid
grid = tf.tile(tf.expand_dims(grid, axis = 0), [batchSize, 1, 1, 1])
features = tf.concat([features, grid], axis = -1)
dim += lDim
elif mod == "ADD":
grid, _ = locations[locType](h, w, lDim, outDim = dim)
features += grid
elif mod == "MUL": # MUL
grid, _ = locations[locType](h, w, lDim, outDim = dim)
if outDim < 0:
outDim = dim
grid = tf.tile(tf.expand_dims(grid, axis = 0), [batchSize, 1, 1, 1])
features = tf.concat([features, grid, features * grid], axis = -1)
dim *= 3
if outDim > 0:
features = linear(features, dim, outDim)
dim = outDim
return features, dim
# config.locationAwareEnd
# H, W, _ = config.imageDims
# projDim = config.stemProjDim
# k = config.stemProjPooling
# projDim on inDim or on out
# inDim = tf.shape(features)[3]
'''
Linearize 2d image to linear vector.
Args:
features: batch of 2d images.
[batchSize, h, w, inDim]
h: image height
w: image width
inDim: number of channels
projDim: if not None, project image to that dimension before linearization
outDim: if not None, project image to that dimension after linearization
loc: if not None, add positional encoding:
locType: L for linear encoding, PE for cos/sin based positional encoding
mod: way to add positional encoding: concatenation (CNCT), addition (ADD),
multiplication (MUL), linear transformation (LIN).
pooling: number to pool image with before linearization.
Returns linearized image:
[batchSize, outDim] (or [batchSize, (h / pooling) * (w /pooling) * projDim] if outDim not supported)
'''
# loc = {"locType": str, "mod": str}
def linearizeFeatures(features, h, w, inDim, projDim = None, outDim = None,
loc = None, pooling = None):
if pooling is None:
pooling = config.imageLinPool
if loc is not None:
features = addLocation(features, inDim, lDim = inDim, outDim = inDim,
locType = loc["locType"], mod = loc["mod"])
if projDim is not None:
features = linear(features, dim, projDim)
features = relu(features)
dim = projDim
if pooling > 1:
poolingDims = [1, pooling, pooling, 1]
features = tf.nn.max_pool(features, ksize = poolingDims, strides = poolingDims,
padding = "SAME")
h /= pooling
w /= pooling
dim = h * w * dim
features = tf.reshape(features, (-1, dim))
if outDim is not None:
features = linear(features, dim, outDim)
dim = outDim
return features, dim
################################### multiplication ###################################
# specific dim / proj for x / y
'''
"Enhanced" hadamard product between x and y:
1. Supports optional projection of x, and y prior to multiplication.
2. Computes simple multiplication, or a parametrized one, using diagonal of complete matrix (bi-linear)
3. Optionally concatenate x or y or their projection to the multiplication result.
Support broadcasting
Args:
x: left-hand side argument
[batchSize, dim]
y: right-hand side argument
[batchSize, dim]
dim: input dimension of x and y
dropout: dropout value to apply on x and y
proj: if not None, project x and y:
dim: projection dimension
shared: use same projection for x and y
dropout: dropout to apply to x and y if projected
interMod: multiplication type:
"MUL": x * y
"DIAG": x * W * y for a learned diagonal parameter W
"BL": x' W y for a learned matrix W
concat: if not None, concatenate x or y or their projection.
mulBias: optional bias to stabilize multiplication (x * bias) (y * bias)
Returns the multiplication result
[batchSize, outDim] when outDim depends on the use of proj and cocnat arguments.
'''
# proj = {"dim": int, "shared": bool, "dropout": float} # "act": str, "actDropout": float
## interMod = ["direct", "scalarW", "bilinear"] # "additive"
# interMod = ["MUL", "DIAG", "BL", "ADD"]
# concat = {"x": bool, "y": bool, "proj": bool}
def mul(x, y, dim, dropout = 1.0, proj = None, interMod = "MUL", concat = None, mulBias = None,
extendY = True, name = "", reuse = None):
with tf.variable_scope("mul" + name, reuse = reuse):
origVals = {"x": x, "y": y, "dim": dim}
x = tf.nn.dropout(x, dropout)
y = tf.nn.dropout(y, dropout)
# projection
if proj is not None:
x = tf.nn.dropout(x, proj.get("dropout", 1.0))
y = tf.nn.dropout(y, proj.get("dropout", 1.0))
if proj["shared"]:
xName, xReuse = "proj", None
yName, yReuse = "proj", True
else:
xName, xReuse = "projX", None
yName, yReuse = "projY", None
x = linear(x, dim, proj["dim"], name = xName, reuse = xReuse)
y = linear(y, dim, proj["dim"], name = yName, reuse = yReuse)
dim = proj["dim"]
projVals = {"x": x, "y": y, "dim": dim}
proj["x"], proj["y"] = x, y
if extendY:
y = tf.expand_dims(y, axis = -2)
# broadcasting to have the same shape
y = tf.zeros_like(x) + y
# multiplication
if interMod == "MUL":
if mulBias is None:
mulBias = config.mulBias
output = (x + mulBias) * (y + mulBias)
elif interMod == "DIAG":
W = getWeight((dim, )) # change initialization?
b = getBias((dim, ))
activations = x * W * y + b
elif interMod == "BL":
W = getWeight((dim, dim))
b = getBias((dim, ))
output = multiply(x, W) * y + b
else: # "ADD"
output = tf.tanh(x + y)
# concatenation
if concat is not None:
concatVals = projVals if concat.get("proj", False) else origVals
if concat.get("x", False):
output = tf.concat([output, concatVals["x"]], axis = -1)
dim += concatVals["dim"]
if concat.get("y", False):
output = ops.concat(output, concatVals["y"], extendY = extendY)
dim += concatVals["dim"]
return output, dim
######################################## rnns ########################################
'''
Creates an RNN cell.
Args:
hdim: the hidden dimension of the RNN cell.
reuse: whether the cell should reuse parameters or create new ones.
cellType: the cell type
RNN, GRU, LSTM, MiGRU, MiLSTM, ProjLSTM
act: the cell activation
NON, TANH, SIGMOID, RELU, ELU
projDim: if ProjLSTM, the dimension for the states projection
Returns the cell.
'''
# tf.nn.rnn_cell.MultiRNNCell([cell(hDim, reuse = reuse) for _ in config.encNumLayers])
# note that config.enc params not general
def createCell(hDim, reuse, cellType = None, act = None, projDim = None):
if cellType is None:
cellType = config.encType
activation = activations.get(act, None)
if cellType == "ProjLSTM":
cell = tf.nn.rnn_cell.LSTMCell
if projDim is None:
projDim = config.cellDim
cell = cell(hDim, num_proj = projDim, reuse = reuse, activation = activation)
return cell
cells = {
"RNN": tf.nn.rnn_cell.BasicRNNCell,
"GRU": tf.nn.rnn_cell.GRUCell,
"LSTM": tf.nn.rnn_cell.BasicLSTMCell,
"MiGRU": MiGRUCell,
"MiLSTM": MiLSTMCell
}
cell = cells[cellType](hDim, reuse = reuse, activation = activation)
return cell
'''
Runs an forward RNN layer.
Args:
inSeq: the input sequence to run the RNN over.
[batchSize, sequenceLength, inDim]
seqL: the sequence matching lengths.
[batchSize, 1]
hDim: hidden dimension of the RNN.
cellType: the cell type
RNN, GRU, LSTM, MiGRU, MiLSTM, ProjLSTM
dropout: value for dropout over input sequence
varDp: if not None, state and input variational dropouts to apply.
dimension of input has to be supported (inputSize).
Returns the outputs sequence and final RNN state.
'''
# varDp = {"stateDp": float, "inputDp": float, "inputSize": int}
# proj = {"output": bool, "state": bool, "dim": int, "dropout": float, "act": str}
def fwRNNLayer(inSeq, seqL, hDim, cellType = None, dropout = 1.0, varDp = None,
name = "", reuse = None): # proj = None
with tf.variable_scope("rnnLayer" + name, reuse = reuse):
batchSize = tf.shape(inSeq)[0]
cell = createCell(hDim, reuse, cellType) # passing reuse isn't mandatory
if varDp is not None:
cell = tf.contrib.rnn.DropoutWrapper(cell,
state_keep_prob = varDp["stateDp"],
input_keep_prob = varDp["inputDp"],
variational_recurrent = True, input_size = varDp["inputSize"], dtype = tf.float32)
else:
inSeq = tf.nn.dropout(inSeq, dropout)
initialState = cell.zero_state(batchSize, tf.float32)
outSeq, lastState = tf.nn.dynamic_rnn(cell, inSeq,
sequence_length = seqL,
initial_state = initialState,
swap_memory = True)
if isinstance(lastState, tf.nn.rnn_cell.LSTMStateTuple):
lastState = lastState.h
# if proj is not None:
# if proj["output"]:
# outSeq = linear(outSeq, cell.output_size, proj["dim"], act = proj["act"],
# dropout = proj["dropout"], name = "projOutput")
# if proj["state"]:
# lastState = linear(lastState, cell.state_size, proj["dim"], act = proj["act"],
# dropout = proj["dropout"], name = "projState")
return outSeq, lastState
'''
Runs an bidirectional RNN layer.
Args:
inSeq: the input sequence to run the RNN over.
[batchSize, sequenceLength, inDim]
seqL: the sequence matching lengths.
[batchSize, 1]
hDim: hidden dimension of the RNN.
cellType: the cell type
RNN, GRU, LSTM, MiGRU, MiLSTM
dropout: value for dropout over input sequence
varDp: if not None, state and input variational dropouts to apply.
dimension of input has to be supported (inputSize).
Returns the outputs sequence and final RNN state.
'''
# varDp = {"stateDp": float, "inputDp": float, "inputSize": int}
# proj = {"output": bool, "state": bool, "dim": int, "dropout": float, "act": str}
def biRNNLayer(inSeq, seqL, hDim, cellType = None, dropout = 1.0, varDp = None,
name = "", reuse = None): # proj = None,
with tf.variable_scope("birnnLayer" + name, reuse = reuse):
batchSize = tf.shape(inSeq)[0]
with tf.variable_scope("fw"):
cellFw = createCell(hDim, reuse, cellType)
with tf.variable_scope("bw"):
cellBw = createCell(hDim, reuse, cellType)
if varDp is not None:
cellFw = tf.contrib.rnn.DropoutWrapper(cellFw,
state_keep_prob = varDp["stateDp"],
input_keep_prob = varDp["inputDp"],
variational_recurrent = True, input_size = varDp["inputSize"], dtype = tf.float32)
cellBw = tf.contrib.rnn.DropoutWrapper(cellBw,
state_keep_prob = varDp["stateDp"],
input_keep_prob = varDp["inputDp"],
variational_recurrent = True, input_size = varDp["inputSize"], dtype = tf.float32)
else:
inSeq = tf.nn.dropout(inSeq, dropout)
initialStateFw = cellFw.zero_state(batchSize, tf.float32)
initialStateBw = cellBw.zero_state(batchSize, tf.float32)
(outSeqFw, outSeqBw), (lastStateFw, lastStateBw) = tf.nn.bidirectional_dynamic_rnn(
cellFw, cellBw, inSeq,
sequence_length = seqL,
initial_state_fw = initialStateFw,
initial_state_bw = initialStateBw,
swap_memory = True)
if isinstance(lastStateFw, tf.nn.rnn_cell.LSTMStateTuple):
lastStateFw = lastStateFw.h # take c?
lastStateBw = lastStateBw.h
outSeq = tf.concat([outSeqFw, outSeqBw], axis = -1)
lastState = tf.concat([lastStateFw, lastStateBw], axis = -1)
# if proj is not None:
# if proj["output"]:
# outSeq = linear(outSeq, cellFw.output_size + cellFw.output_size,
# proj["dim"], act = proj["act"], dropout = proj["dropout"],
# name = "projOutput")
# if proj["state"]:
# lastState = linear(lastState, cellFw.state_size + cellFw.state_size,
# proj["dim"], act = proj["act"], dropout = proj["dropout"],
# name = "projState")
return outSeq, lastState
# int(hDim / 2) for biRNN?
'''
Runs an RNN layer by calling biRNN or fwRNN.
Args:
inSeq: the input sequence to run the RNN over.
[batchSize, sequenceLength, inDim]
seqL: the sequence matching lengths.
[batchSize, 1]
hDim: hidden dimension of the RNN.
bi: true to run bidirectional rnn.
cellType: the cell type
RNN, GRU, LSTM, MiGRU, MiLSTM
dropout: value for dropout over input sequence
varDp: if not None, state and input variational dropouts to apply.
dimension of input has to be supported (inputSize).
Returns the outputs sequence and final RNN state.
'''
# proj = {"output": bool, "state": bool, "dim": int, "dropout": float, "act": str}
# varDp = {"stateDp": float, "inputDp": float, "inputSize": int}
def RNNLayer(inSeq, seqL, hDim, bi = None, cellType = None, dropout = 1.0, varDp = None,
name = "", reuse = None): # proj = None
with tf.variable_scope("rnnLayer" + name, reuse = reuse):
if bi is None:
bi = config.encBi
rnn = biRNNLayer if bi else fwRNNLayer
if bi:
hDim = int(hDim / 2)
return rnn(inSeq, seqL, hDim, cellType = cellType, dropout = dropout, varDp = varDp) # , proj = proj
# tf counterpart?
# hDim = config.moduleDim
def multigridRNNLayer(featrues, h, w, dim, name = "", reuse = None):
with tf.variable_scope("multigridRNNLayer" + name, reuse = reuse):
featrues = linear(featrues, dim, dim / 2, name = "i")
output0 = gridRNNLayer(featrues, h, w, dim, right = True, down = True, name = "rd")
output1 = gridRNNLayer(featrues, h, w, dim, right = True, down = False, name = "r")
output2 = gridRNNLayer(featrues, h, w, dim, right = False, down = True, name = "d")
output3 = gridRNNLayer(featrues, h, w, dim, right = False, down = False, name = "NON")
output = tf.concat([output0, output1, output2, output3], axis = -1)
output = linear(output, 2 * dim, dim, name = "o")
return outputs
# h,w should be constants
def gridRNNLayer(features, h, w, dim, right, down, name = "", reuse = None):
with tf.variable_scope("gridRNNLayer" + name):
batchSize = tf.shape(features)[0]
cell = createCell(dim, reuse = reuse, cellType = config.stemGridRnnMod,
act = config.stemGridAct)
initialState = cell.zero_state(batchSize, tf.float32)
inputs = [tf.unstack(row, w, axis = 1) for row in tf.unstack(features, h, axis = 1)]
states = [[None for _ in range(w)] for _ in range(h)]
iAxis = range(h) if down else (range(h)[::-1])
jAxis = range(w) if right else (range(w)[::-1])
iPrev = -1 if down else 1
jPrev = -1 if right else 1
prevState = lambda i,j: states[i][j] if (i >= 0 and i < h and j >= 0 and j < w) else initialState
for i in iAxis:
for j in jAxis:
prevs = tf.concat((prevState(i + iPrev, j), prevState(i, j + jPrev)), axis = -1)
curr = inputs[i][j]
_, states[i][j] = cell(prevs, curr)
outputs = [tf.stack(row, axis = 1) for row in states]
outputs = tf.stack(outputs, axis = 1)
return outputs