-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
388 lines (324 loc) · 14 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import gensim.models
import numpy as np
from tqdm import tqdm
import csv
from scipy.sparse import csr_matrix
import gensim.models.word2vec as w2v
import gensim.models.fasttext as fasttext
import codecs
import re
def reformat(code, is_diag):
"""
Put a period in the right place because the MIMIC-3 data files exclude them.
Generally, procedure codes have dots after the first two digits,
while diagnosis codes have dots after the first three digits.
"""
code = ''.join(code.split('.'))
if is_diag:
if code.startswith('E'):
if len(code) > 4:
code = code[:4] + '.' + code[4:]
else:
if len(code) > 3:
code = code[:3] + '.' + code[3:]
else:
code = code[:2] + '.' + code[2:]
return code
import nltk
from nltk.tokenize import RegexpTokenizer
nlp_tool = nltk.data.load('tokenizers/punkt/english.pickle')
tokenizer = RegexpTokenizer(r'\w+')
def write_discharge_summaries(out_file, min_sentence_len, notes_file):
print("processing notes file")
with open(notes_file, 'r') as csvfile:
with open(out_file, 'w') as outfile:
print("writing to %s" % (out_file))
outfile.write(','.join(['SUBJECT_ID', 'HADM_ID', 'CHARTTIME', 'TEXT']) + '\n')
notereader = csv.reader(csvfile)
next(notereader)
for line in tqdm(notereader):
subj = int(line[1])
category = line[6]
if category == "Discharge summary":
note = line[10]
all_sents_inds = []
generator = nlp_tool.span_tokenize(note)
for t in generator:
all_sents_inds.append(t)
text = ""
for ind in range(len(all_sents_inds)):
start = all_sents_inds[ind][0]
end = all_sents_inds[ind][1]
sentence_txt = note[start:end]
tokens = [t.lower() for t in tokenizer.tokenize(sentence_txt) if not t.isnumeric()]
if ind == 0:
text += '[CLS] ' + ' '.join(tokens) + ' [SEP]'
else:
text += ' [CLS] ' + ' '.join(tokens) + ' [SEP]'
text = '"' + text + '"'
outfile.write(','.join([line[1], line[2], line[4], text]) + '\n')
return out_file
def early_stop(metrics_hist, criterion, patience):
if not np.all(np.isnan(metrics_hist[criterion])):
if len(metrics_hist[criterion]) >= patience:
if criterion == 'loss_dev':
return np.nanargmin(metrics_hist[criterion]) < len(metrics_hist[criterion]) - patience
else:
return np.nanargmax(metrics_hist[criterion]) < len(metrics_hist[criterion]) - patience
else:
return False
import json
def save_metrics(metrics_hist_all, model_dir):
with open(model_dir + "/metrics.json", 'w') as metrics_file:
#concatenate dev, train metrics into one dict
data = metrics_hist_all[0].copy()
data.update({"%s_te" % (name):val for (name,val) in metrics_hist_all[1].items()})
data.update({"%s_tr" % (name):val for (name,val) in metrics_hist_all[2].items()})
json.dump(data, metrics_file, indent=1)
import torch
def save_everything(args, metrics_hist_all, model, model_dir, params, criterion, evaluate=False):
save_metrics(metrics_hist_all, model_dir)
if not evaluate:
#save the model with the best criterion metric
if not np.all(np.isnan(metrics_hist_all[0][criterion])):
if criterion == 'loss_dev':
eval_val = np.nanargmin(metrics_hist_all[0][criterion])
else:
eval_val = np.nanargmax(metrics_hist_all[0][criterion])
if eval_val == len(metrics_hist_all[0][criterion]) - 1:
sd = model.cpu().state_dict()
torch.save(sd, model_dir + "/model_best_%s.pth" % criterion)
if args.gpu >= 0:
model.cuda(args.gpu)
print("saved metrics, params, model to directory %s\n" % (model_dir))
def print_metrics(metrics):
print()
if "auc_macro" in metrics.keys():
print("[MACRO] accuracy, precision, recall, f-measure, AUC")
print("%.4f, %.4f, %.4f, %.4f, %.4f" % (metrics["acc_macro"], metrics["prec_macro"], metrics["rec_macro"], metrics["f1_macro"], metrics["auc_macro"]))
else:
print("[MACRO] accuracy, precision, recall, f-measure")
print("%.4f, %.4f, %.4f, %.4f" % (metrics["acc_macro"], metrics["prec_macro"], metrics["rec_macro"], metrics["f1_macro"]))
if "auc_micro" in metrics.keys():
print("[MICRO] accuracy, precision, recall, f-measure, AUC")
print("%.4f, %.4f, %.4f, %.4f, %.4f" % (metrics["acc_micro"], metrics["prec_micro"], metrics["rec_micro"], metrics["f1_micro"], metrics["auc_micro"]))
else:
print("[MICRO] accuracy, precision, recall, f-measure")
print("%.4f, %.4f, %.4f, %.4f" % (metrics["acc_micro"], metrics["prec_micro"], metrics["rec_micro"], metrics["f1_micro"]))
for metric, val in metrics.items():
if metric.find("rec_at") != -1:
print("%s: %.4f" % (metric, val))
print()
def union_size(yhat, y, axis):
#axis=0 for label-level union (macro). axis=1 for instance-level
return np.logical_or(yhat, y).sum(axis=axis).astype(float)
def intersect_size(yhat, y, axis):
#axis=0 for label-level union (macro). axis=1 for instance-level
return np.logical_and(yhat, y).sum(axis=axis).astype(float)
def macro_accuracy(yhat, y):
num = intersect_size(yhat, y, 0) / (union_size(yhat, y, 0) + 1e-10)
return np.mean(num)
def macro_precision(yhat, y):
num = intersect_size(yhat, y, 0) / (yhat.sum(axis=0) + 1e-10)
return np.mean(num)
def macro_recall(yhat, y):
num = intersect_size(yhat, y, 0) / (y.sum(axis=0) + 1e-10)
return np.mean(num)
def macro_f1(yhat, y):
prec = macro_precision(yhat, y)
rec = macro_recall(yhat, y)
if prec + rec == 0:
f1 = 0.
else:
f1 = 2*(prec*rec)/(prec+rec)
return f1
def all_macro(yhat, y):
return macro_accuracy(yhat, y), macro_precision(yhat, y), macro_recall(yhat, y), macro_f1(yhat, y)
def micro_accuracy(yhatmic, ymic):
return intersect_size(yhatmic, ymic, 0) / union_size(yhatmic, ymic, 0)
def micro_precision(yhatmic, ymic):
return intersect_size(yhatmic, ymic, 0) / yhatmic.sum(axis=0)
def micro_recall(yhatmic, ymic):
return intersect_size(yhatmic, ymic, 0) / ymic.sum(axis=0)
def micro_f1(yhatmic, ymic):
prec = micro_precision(yhatmic, ymic)
rec = micro_recall(yhatmic, ymic)
if prec + rec == 0:
f1 = 0.
else:
f1 = 2*(prec*rec)/(prec+rec)
return f1
########################
# METRICS BY CODE TYPE
########################
def results_by_type(Y, mdir, version='mimic3'):
d2ind = {}
p2ind = {}
# get predictions for diagnoses and procedures
diag_preds = defaultdict(lambda: set([]))
proc_preds = defaultdict(lambda: set([]))
preds = defaultdict(lambda: set())
with open('%s/preds_test.psv' % mdir, 'r') as f:
r = csv.reader(f, delimiter='|')
for row in r:
if len(row) > 1:
for code in row[1:]:
preds[row[0]].add(code)
if code != '':
try:
pos = code.index('.')
if pos == 3 or (code[0] == 'E' and pos == 4):
if code not in d2ind:
d2ind[code] = len(d2ind)
diag_preds[row[0]].add(code)
elif pos == 2:
if code not in p2ind:
p2ind[code] = len(p2ind)
proc_preds[row[0]].add(code)
except:
if len(code) == 3 or (code[0] == 'E' and len(code) == 4):
if code not in d2ind:
d2ind[code] = len(d2ind)
diag_preds[row[0]].add(code)
# get ground truth for diagnoses and procedures
diag_golds = defaultdict(lambda: set([]))
proc_golds = defaultdict(lambda: set([]))
golds = defaultdict(lambda: set())
test_file = '%s/test_%s.csv' % (MIMIC_3_DIR, str(Y)) if version == 'mimic3' else '%s/test.csv' % MIMIC_2_DIR
with open(test_file, 'r') as f:
r = csv.reader(f)
# header
next(r)
for row in r:
codes = set([c for c in row[3].split(';')])
for code in codes:
golds[row[1]].add(code)
try:
pos = code.index('.')
if pos == 3:
if code not in d2ind:
d2ind[code] = len(d2ind)
diag_golds[row[1]].add(code)
elif pos == 2:
if code not in p2ind:
p2ind[code] = len(p2ind)
proc_golds[row[1]].add(code)
except:
if len(code) == 3 or (code[0] == 'E' and len(code) == 4):
if code not in d2ind:
d2ind[code] = len(d2ind)
diag_golds[row[1]].add(code)
hadm_ids = sorted(set(diag_golds.keys()).intersection(set(diag_preds.keys())))
ind2d = {i: d for d, i in d2ind.items()}
ind2p = {i: p for p, i in p2ind.items()}
type_dicts = (ind2d, ind2p)
return diag_preds, diag_golds, proc_preds, proc_golds, golds, preds, hadm_ids, type_dicts
def diag_f1(diag_preds, diag_golds, ind2d, hadm_ids):
num_labels = len(ind2d)
yhat_diag = np.zeros((len(hadm_ids), num_labels))
y_diag = np.zeros((len(hadm_ids), num_labels))
for i, hadm_id in tqdm(enumerate(hadm_ids)):
yhat_diag_inds = [1 if ind2d[j] in diag_preds[hadm_id] else 0 for j in range(num_labels)]
gold_diag_inds = [1 if ind2d[j] in diag_golds[hadm_id] else 0 for j in range(num_labels)]
yhat_diag[i] = yhat_diag_inds
y_diag[i] = gold_diag_inds
return micro_f1(yhat_diag.ravel(), y_diag.ravel())
def proc_f1(proc_preds, proc_golds, ind2p, hadm_ids):
num_labels = len(ind2p)
yhat_proc = np.zeros((len(hadm_ids), num_labels))
y_proc = np.zeros((len(hadm_ids), num_labels))
for i, hadm_id in tqdm(enumerate(hadm_ids)):
yhat_proc_inds = [1 if ind2p[j] in proc_preds[hadm_id] else 0 for j in range(num_labels)]
gold_proc_inds = [1 if ind2p[j] in proc_golds[hadm_id] else 0 for j in range(num_labels)]
yhat_proc[i] = yhat_proc_inds
y_proc[i] = gold_proc_inds
return micro_f1(yhat_proc.ravel(), y_proc.ravel())
def all_micro(yhatmic, ymic):
return micro_accuracy(yhatmic, ymic), micro_precision(yhatmic, ymic), micro_recall(yhatmic, ymic), micro_f1(yhatmic, ymic)
from sklearn.metrics import roc_curve, auc
def auc_metrics(yhat_raw, y, ymic):
if yhat_raw.shape[0] <= 1:
return
fpr = {}
tpr = {}
roc_auc = {}
#get AUC for each label individually
relevant_labels = []
auc_labels = {}
for i in range(y.shape[1]):
#only if there are true positives for this label
if y[:,i].sum() > 0:
fpr[i], tpr[i], _ = roc_curve(y[:,i], yhat_raw[:,i])
if len(fpr[i]) > 1 and len(tpr[i]) > 1:
auc_score = auc(fpr[i], tpr[i])
if not np.isnan(auc_score):
auc_labels["auc_%d" % i] = auc_score
relevant_labels.append(i)
#macro-AUC: just average the auc scores
aucs = []
for i in relevant_labels:
aucs.append(auc_labels['auc_%d' % i])
roc_auc['auc_macro'] = np.mean(aucs)
#micro-AUC: just look at each individual prediction
yhatmic = yhat_raw.ravel()
fpr["micro"], tpr["micro"], _ = roc_curve(ymic, yhatmic)
roc_auc["auc_micro"] = auc(fpr["micro"], tpr["micro"])
return roc_auc
def recall_at_k(yhat_raw, y, k):
#num true labels in top k predictions / num true labels
sortd = np.argsort(yhat_raw)[:,::-1]
topk = sortd[:,:k]
#get recall at k for each example
vals = []
for i, tk in enumerate(topk):
num_true_in_top_k = y[i,tk].sum()
denom = y[i,:].sum()
vals.append(num_true_in_top_k / float(denom))
vals = np.array(vals)
vals[np.isnan(vals)] = 0.
return np.mean(vals)
def precision_at_k(yhat_raw, y, k):
#num true labels in top k predictions / k
sortd = np.argsort(yhat_raw)[:,::-1]
topk = sortd[:,:k]
#get precision at k for each example
vals = []
for i, tk in enumerate(topk):
if len(tk) > 0:
num_true_in_top_k = y[i,tk].sum()
denom = len(tk)
vals.append(num_true_in_top_k / float(denom))
return np.mean(vals)
def all_metrics(yhat, y, k=8, yhat_raw=None, calc_auc=True):
"""
Inputs:
yhat: binary predictions matrix
y: binary ground truth matrix
k: for @k metrics
yhat_raw: prediction scores matrix (floats)
Outputs:
dict holding relevant metrics
"""
names = ["acc", "prec", "rec", "f1"]
#macro
macro = all_macro(yhat, y)
#micro
ymic = y.ravel()
yhatmic = yhat.ravel()
micro = all_micro(yhatmic, ymic)
metrics = {names[i] + "_macro": macro[i] for i in range(len(macro))}
metrics.update({names[i] + "_micro": micro[i] for i in range(len(micro))})
#AUC and @k
if yhat_raw is not None and calc_auc:
#allow k to be passed as int or list
if type(k) != list:
k = [k]
for k_i in k:
rec_at_k = recall_at_k(yhat_raw, y, k_i)
metrics['rec_at_%d' % k_i] = rec_at_k
prec_at_k = precision_at_k(yhat_raw, y, k_i)
metrics['prec_at_%d' % k_i] = prec_at_k
metrics['f1_at_%d' % k_i] = 2*(prec_at_k*rec_at_k)/(prec_at_k+rec_at_k)
roc_auc = auc_metrics(yhat_raw, y, ymic)
metrics.update(roc_auc)
return metrics