title | titleSuffix | description | services | author | ms.author | ms.reviewer | ms.service | ms.subservice | ms.custom | ms.topic | ms.date |
---|---|---|---|---|---|---|---|---|---|---|---|
How to access a compute instance terminal in your workspace |
Azure Machine Learning |
Use the terminal on a compute instance for Git operations, to install packages, and add kernels. |
machine-learning |
abeomor |
osomorog |
sgilley |
machine-learning |
core |
event-tier1-build-2022 |
how-to |
02/05/2021 |
Access the terminal of a compute instance in your workspace to:
- Use files from Git and version files. These files are stored in your workspace file system, not restricted to a single compute instance.
- Install packages on the compute instance.
- Create extra kernels on the compute instance.
- An Azure subscription. If you don't have an Azure subscription, create a free account before you begin.
- A Machine Learning workspace. See Create an Azure Machine Learning workspace.
To access the terminal:
-
Open your workspace in Azure Machine Learning studio.
-
On the left side, select Notebooks.
-
Select the Open terminal image.
:::image type="content" source="media/how-to-use-terminal/open-terminal-window.png" alt-text="Open terminal window":::
-
When a compute instance is running, the terminal window for that compute instance appears.
-
When no compute instance is running, use the Compute section on the right to start or create a compute instance. :::image type="content" source="media/how-to-use-terminal/start-or-create-compute.png" alt-text="Start or create a compute instance":::
In addition to the steps above, you can also access the terminal from:
- RStudio (See [Add RStudio]([Create and manage an Azure Machine Learning compute instance]): Select the Terminal tab on top left.
- Jupyter Lab: Select the Terminal tile under the Other heading in the Launcher tab.
- Jupyter: Select New>Terminal on top right in the Files tab.
- SSH to the machine, if you enabled SSH access when the compute instance was created.
- Windows:
Ctrl-Insert
to copy and useCtrl-Shift-v
orShift-Insert
to paste.- Mac OS:
Cmd-c
to copy andCmd-v
to paste.- FireFox/IE may not support clipboard permissions properly.
Access all Git operations from the terminal. All Git files and folders will be stored in your workspace file system. This storage allows you to use these files from any compute instance in your workspace.
Note
Add your files and folders anywhere under the ~/cloudfiles/code/Users folder so they will be visible in all your Jupyter environments.
Learn more about cloning Git repositories into your workspace file system.
Install packages from a terminal window. Install Python packages into the Python 3.8 - AzureML environment. Install R packages into the R environment.
Or you can install packages directly in Jupyter Notebook or RStudio:
- RStudio [Add RStudio]([Create and manage an Azure Machine Learning compute instance]: Use the Packages tab on the bottom right, or the Console tab on the top left.
- Python: Add install code and execute in a Jupyter Notebook cell.
Note
For package management within a notebook, use %pip or %conda magic functions to automatically install packages into the currently-running kernel, rather than !pip or !conda which refers to all packages (including packages outside the currently-running kernel)
Warning
While customizing the compute instance, make sure you do not delete the azureml_py36 or azureml_py38 conda environments. Also do not delete Python 3.6 - AzureML or Python 3.8 - AzureML kernels. These are needed for Jupyter/JupyterLab functionality.
To add a new Jupyter kernel to the compute instance:
-
Use the terminal window to create a new environment. For example, the code below creates
newenv
:conda create --name newenv
-
Activate the environment. For example, after creating
newenv
:conda activate newenv
-
Install pip and ipykernel package to the new environment and create a kernel for that conda env
conda install pip conda install ipykernel python -m ipykernel install --user --name newenv --display-name "Python (newenv)"
Any of the available Jupyter Kernels can be installed.
Select View active sessions in the terminal toolbar to see a list of all active terminal sessions. When there are no active sessions, this tab will be disabled.
Warning
Make sure you close any unused sessions to preserve your compute instance's resources. Idle terminals may impact performance of compute instances.