title | description | services | documentationcenter | author | manager | editor | ms.assetid | ms.service | ms.workload | ms.tgt_pltfrm | ms.topic | ms.date | ms.author |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Guidelines for Azure NetApp Files network planning | Microsoft Docs |
Describes guidelines that can help you design an effective network architecture by using Azure NetApp Files. |
azure-netapp-files |
ram-kakani |
azure-netapp-files |
storage |
na |
conceptual |
05/13/2022 |
ramakk |
Network architecture planning is a key element of designing any application infrastructure. This article helps you design an effective network architecture for your workloads to benefit from the rich capabilities of Azure NetApp Files.
Azure NetApp Files volumes are designed to be contained in a special purpose subnet called a delegated subnet within your Azure Virtual Network. Therefore, you can access the volumes directly from within Azure over VNet peering or from on-premises over a Virtual Network Gateway (ExpressRoute or VPN Gateway). The subnet is dedicated to Azure NetApp Files and there's no connectivity to the Internet.
The Standard network features configuration for Azure NetApp Files is available for public preview. After registering for this feature with your subscription, you can create new volumes choosing Standard or Basic network features in supported regions. In regions where the Standard network features aren't supported, the volume defaults to using the Basic network features.
-
Standard
Selecting this setting enables higher IP limits and standard VNet features such as network security groups and user-defined routes on delegated subnets, and additional connectivity patterns as indicated in this article. -
Basic
Selecting this setting enables selective connectivity patterns and limited IP scale as mentioned in the Considerations section. All the constraints apply in this setting.
Azure NetApp Files standard network features are supported for the following regions:
- Australia Central
- Australia Central 2
- Australia Southeast
- East US
- East US 2
- France Central
- Germany West Central
- North Central US
- North Europe
- South Central US
- UK South
- West Europe
- West US 2
- West US 3
You should understand a few considerations when you plan for Azure NetApp Files network.
The following table describes what’s supported for each network features configuration:
Features | Standard network features | Basic network features |
---|---|---|
Number of IPs in a VNet (including immediately peered VNets) accessing volumes in an Azure NetApp Files hosting VNet | Standard limits as VMs | 1000 |
Azure NetApp Files delegated subnets per VNet | 1 | 1 |
Network Security Groups (NSGs) on Azure NetApp Files delegated subnets | Yes | No |
User-defined routes (UDRs) on Azure NetApp Files delegated subnets | Yes | No |
Connectivity to Private Endpoints | No | No |
Connectivity to Service Endpoints | No | No |
Azure policies (for example, custom naming policies) on the Azure NetApp Files interface | No | No |
Load balancers for Azure NetApp Files traffic | No | No |
Dual stack (IPv4 and IPv6) VNet | No (IPv4 only supported) |
No (IPv4 only supported) |
The following table describes the network topologies supported by each network features configuration of Azure NetApp Files.
Topologies | Standard network features | Basic network features |
---|---|---|
Connectivity to volume in a local VNet | Yes | Yes |
Connectivity to volume in a peered VNet (Same region) | Yes | Yes |
Connectivity to volume in a peered VNet (Cross region or global peering) | No | No |
Connectivity to a volume over ExpressRoute gateway | Yes | Yes |
ExpressRoute (ER) FastPath | Yes | No |
Connectivity from on-premises to a volume in a spoke VNet over ExpressRoute gateway and VNet peering with gateway transit | Yes | Yes |
Connectivity from on-premises to a volume in a spoke VNet over VPN gateway | Yes | Yes |
Connectivity from on-premises to a volume in a spoke VNet over VPN gateway and VNet peering with gateway transit | Yes | Yes |
Connectivity over Active/Passive VPN gateways | Yes | Yes |
Connectivity over Active/Active VPN gateways | Yes | No |
Connectivity over Active/Active Zone Redundant gateways | No | No |
Connectivity over Virtual WAN (VWAN) | No | No |
This section explains concepts that help you with virtual network planning.
Before provisioning an Azure NetApp Files volume, you need to create an Azure virtual network (VNet) or use one that already exists in your subscription. The VNet defines the network boundary of the volume. For more information on creating virtual networks, see the Azure Virtual Network documentation.
Subnets segment the virtual network into separate address spaces that are usable by the Azure resources in them. Azure NetApp Files volumes are contained in a special-purpose subnet called a delegated subnet.
Subnet delegation gives explicit permissions to the Azure NetApp Files service to create service-specific resources in the subnet. It uses a unique identifier in deploying the service. In this case, a network interface is created to enable connectivity to Azure NetApp Files.
If you use a new VNet, you can create a subnet and delegate the subnet to Azure NetApp Files by following instructions in Delegate a subnet to Azure NetApp Files. You can also delegate an existing empty subnet that's not delegated to other services.
If the VNet is peered with another VNet, you can't expand the VNet address space. For that reason, the new delegated subnet needs to be created within the VNet address space. If you need to extend the address space, you must delete the VNet peering before expanding the address space.
User-defined routes (UDRs) and Network security groups (NSGs) are only supported on Azure NetApp Files delegated subnets that have at least one volume created with the Standard network features.
Note
Associating NSGs at the network interface level is not supported for the Azure NetApp Files network interfaces.
If the subnet has a combination of volumes with the Standard and Basic network features (or for existing volumes not registered for the feature preview), UDRs and NSGs applied on the delegated subnets will only apply to the volumes with the Standard network features.
Configuring user-defined routes (UDRs) on the source VM subnets with address prefix of delegated subnet and next hop as NVA isn't supported for volumes with the Basic network features. Such a setting will result in connectivity issues.
The following diagram illustrates an Azure-native environment:
A basic scenario is to create or connect to an Azure NetApp Files volume from a VM in the same VNet. For VNet 2 in the diagram, Volume 1 is created in a delegated subnet and can be mounted on VM 1 in the default subnet.
If you have additional VNets in the same region that need access to each other’s resources, the VNets can be connected using VNet peering to enable secure connectivity through the Azure infrastructure.
Consider VNet 2 and VNet 3 in the diagram above. If VM 1 needs to connect to VM 2 or Volume 2, or if VM 2 needs to connect to VM 1 or Volume 1, then you need to enable VNet peering between VNet 2 and VNet 3.
Also, consider a scenario where VNet 1 is peered with VNet 2, and VNet 2 is peered with VNet 3 in the same region. The resources from VNet 1 can connect to resources in VNet 2, but it can't connect to resources in VNet 3 unless VNet 1 and VNet 3 are peered.
In the diagram above, although VM 3 can connect to Volume 1, VM 4 can't connect to Volume 2. The reason for this is that the spoke VNets aren't peered, and transit routing isn't supported over VNet peering.
The following diagram illustrates a hybrid environment:
In the hybrid scenario, applications from on-premises datacenters need access to the resources in Azure. This is the case whether you want to extend your datacenter to Azure, or you want to use Azure native services or for disaster recovery. See VPN Gateway planning options for information on how to connect multiple resources on-premises to resources in Azure through a site-to-site VPN or an ExpressRoute.
In a hybrid hub-spoke topology, the hub VNet in Azure acts as a central point of connectivity to your on-premises network. The spokes are VNets peered with the hub, and they can be used to isolate workloads.
Depending on the configuration, you can connect on-premises resources to resources in the hub and the spokes.
In the topology illustrated above, the on-premises network is connected to a hub VNet in Azure, and there are 2 spoke VNets in the same region peered with the hub VNet. In this scenario, the connectivity options supported for Azure NetApp Files volumes are as follows:
- On-premises resources VM 1 and VM 2 can connect to Volume 1 in the hub over a site-to-site VPN or ExpressRoute circuit.
- On-premises resources VM 1 and VM 2 can connect to Volume 2 or Volume 3 over a site-to-site VPN and regional VNet peering.
- VM 3 in the hub VNet can connect to Volume 2 in spoke VNet 1 and Volume 3 in spoke VNet 2.
- VM 4 from spoke VNet 1 and VM 5 from spoke VNet 2 can connect to Volume 1 in the hub VNet.
- VM 4 in spoke VNet 1 can't connect to Volume 3 in spoke VNet 2. Also, VM 5 in spoke VNet2 can't connect to Volume 2 in spoke VNet 1. This is the case because the spoke VNets aren't peered and transit routing isn't supported over VNet peering.
- In the above architecture if there's a gateway in the spoke VNet as well, the connectivity to the ANF volume from on-prem connecting over the gateway in the Hub will be lost. By design, preference would be given to the gateway in the spoke VNet and so only machines connecting over that gateway can connect to the ANF volume.