|
| 1 | +import numpy as np |
| 2 | +from collections import namedtuple |
| 3 | +fav_number = 1352 |
| 4 | + |
| 5 | +State = namedtuple('State', ['at', 'steps', 'dist']) |
| 6 | + |
| 7 | + |
| 8 | +def is_wall(x, y): |
| 9 | + i = x*x + 3*x + 2*x*y + y + y*y + fav_number |
| 10 | + bits = str(bin(i))[2:] |
| 11 | + return (bits.count('1') % 2) == 1 |
| 12 | + |
| 13 | + |
| 14 | +def generate_map(size_x, size_y): |
| 15 | + wall_map = np.zeros((size_x, size_y)) |
| 16 | + |
| 17 | + for x in range(size_x): |
| 18 | + for y in range(size_y): |
| 19 | + if is_wall(x, y): |
| 20 | + wall_map[x, y] = -1 |
| 21 | + |
| 22 | + return wall_map |
| 23 | + |
| 24 | + |
| 25 | +def valid_pos(at, map_size): |
| 26 | + if at[0] < 0 or at[1] < 0 or at[0] >= map_size[0] or at[1] >= map_size[1]: |
| 27 | + return False |
| 28 | + else: |
| 29 | + return True |
| 30 | + |
| 31 | + |
| 32 | +def get_dist(v): |
| 33 | + return np.linalg.norm(v, ord=1) |
| 34 | + |
| 35 | + |
| 36 | +if __name__ == '__main__': |
| 37 | + start = np.array([1, 1]) |
| 38 | + target = np.array([31, 39]) |
| 39 | + |
| 40 | + map_size = target + 25 |
| 41 | + |
| 42 | + steps = [np.array([0, 1]), np.array([0, -1]), np.array([1, 0]), np.array([-1, 0])] |
| 43 | + |
| 44 | + wall_map = generate_map(map_size[0], map_size[1]) |
| 45 | + |
| 46 | + states = [State(start, 0, get_dist(target-start))] |
| 47 | + |
| 48 | + while True: |
| 49 | + dist_min = np.sum(map_size) |
| 50 | + i_min = -1 |
| 51 | + |
| 52 | + # Get best current location |
| 53 | + for i, state in enumerate(states): |
| 54 | + if state.dist < dist_min: |
| 55 | + dist_min = state.dist |
| 56 | + i_min = i |
| 57 | + |
| 58 | + state = states[i_min] |
| 59 | + del states[i_min] |
| 60 | + wall_map[state.at[0], state.at[1]] = 1 |
| 61 | + |
| 62 | + if dist_min == 0: |
| 63 | + break |
| 64 | + |
| 65 | + # Generate new steps |
| 66 | + states_new = [] |
| 67 | + |
| 68 | + for step in steps: |
| 69 | + new_pos = state.at + step |
| 70 | + |
| 71 | + if not valid_pos(new_pos, map_size) or wall_map[new_pos[0], new_pos[1]] != 0: |
| 72 | + continue |
| 73 | + |
| 74 | + new_state = State(new_pos, state.steps + 1, get_dist(target-new_pos)) |
| 75 | + states_new.append(new_state) |
| 76 | + |
| 77 | + states.extend(states_new) |
| 78 | + |
| 79 | + print('Minimum distance to target: {}'.format(state.steps)) |
| 80 | + |
| 81 | + # Reset map |
| 82 | + wall_map = generate_map(map_size[0], map_size[1]) |
| 83 | + |
| 84 | + positions = [start] |
| 85 | + wall_map[start[0], start[1]] = 1 |
| 86 | + total_fields = 1 |
| 87 | + |
| 88 | + for a in range(50): |
| 89 | + |
| 90 | + positions_new = [] |
| 91 | + |
| 92 | + for position in positions: |
| 93 | + |
| 94 | + for step in steps: |
| 95 | + position_new = position + step |
| 96 | + |
| 97 | + if not valid_pos(position_new, map_size) or wall_map[position_new[0], position_new[1]] != 0: |
| 98 | + continue |
| 99 | + |
| 100 | + wall_map[position_new[0], position_new[1]] = 1 |
| 101 | + positions_new.append(position_new) |
| 102 | + total_fields += 1 |
| 103 | + |
| 104 | + positions = positions_new |
| 105 | + |
| 106 | + print('Total positions accessible in 50 steps: {}'.format(total_fields)) |
| 107 | + |
| 108 | + |
| 109 | + |
| 110 | + |
| 111 | + |
| 112 | + |
| 113 | + |
0 commit comments