-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
326 lines (280 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import json
from datetime import datetime
from PIL import Image
import numpy as np
import torch
from diffusers import DiffusionPipeline
from tqdm.auto import tqdm
import tempfile
from diffusers.utils import export_to_video
from utils import (
generate_neighbors,
prompt_to_filename,
get_noises,
TORCH_DTYPE_MAP,
get_latent_prep_fn,
parse_cli_args,
serialize_artifacts,
MODEL_NAME_MAP,
prepare_video_frames,
)
from verifiers import SUPPORTED_VERIFIERS
# Non-configurable constants
TOPK = 1 # Always selecting the top-1 noise for the next round
MAX_SEED = np.iinfo(np.int32).max # To generate random seeds
def sample(
noises: dict[int, torch.Tensor],
prompt: str,
search_round: int,
pipe: DiffusionPipeline,
verifier,
topk: int,
root_dir: str,
config: dict,
) -> dict:
"""
For a given prompt, generate images using all provided noises in batches,
score them with the verifier, and select the top-K noise.
The images and JSON artifacts are serialized via `serialize_artifacts`.
"""
use_low_gpu_vram = config.get("use_low_gpu_vram", False)
batch_size_for_img_gen = config.get("batch_size_for_img_gen", 1)
verifier_args = config.get("verifier_args")
choice_of_metric = verifier_args.get("choice_of_metric", None)
verifier_to_use = verifier_args.get("name", "gemini")
search_args = config.get("search_args", None)
images_for_prompt = []
noises_used = []
seeds_used = []
images_info = [] # Will collect (seed, noise, image, filename) tuples for serialization.
prompt_filename = prompt_to_filename(prompt)
# Convert the noises dictionary into a list of (seed, noise) tuples.
noise_items = list(noises.items())
# Process the noises in batches.
# TODO: find better way
extension_to_use = "png"
if "LTX" in pipe.__class__.__name__:
extension_to_use = "mp4"
elif "Wan" in pipe.__class__.__name__:
extension_to_use = "mp4"
for i in range(0, len(noise_items), batch_size_for_img_gen):
batch = noise_items[i : i + batch_size_for_img_gen]
seeds_batch, noises_batch = zip(*batch)
filenames_batch = [
os.path.join(root_dir, f"{prompt_filename}_i@{search_round}_s@{seed}.{extension_to_use}")
for seed in seeds_batch
]
if use_low_gpu_vram and verifier_to_use != "gemini":
pipe = pipe.to("cuda:0")
print(f"Generating images for batch with seeds: {list(seeds_batch)}.")
# Create a batched prompt list and stack the latents.
batched_prompts = [prompt] * len(noises_batch)
batched_latents = torch.stack(noises_batch).squeeze(dim=1)
batch_result = pipe(prompt=batched_prompts, latents=batched_latents, **config["pipeline_call_args"])
if hasattr(batch_result, "images"):
batch_images = batch_result.images
elif hasattr(batch_result, "frames"):
batch_images = [vid for vid in batch_result.frames]
if use_low_gpu_vram and verifier_to_use != "gemini":
pipe = pipe.to("cpu")
# Collect the images and corresponding info.
for seed, noise, image, filename in zip(seeds_batch, noises_batch, batch_images, filenames_batch):
images_for_prompt.append(image)
noises_used.append(noise)
seeds_used.append(seed)
images_info.append((seed, noise, image, filename))
# Prepare verifier inputs and perform inference.
if isinstance(images_for_prompt[0], Image.Image):
verifier_inputs = verifier.prepare_inputs(images=images_for_prompt, prompts=[prompt] * len(images_for_prompt))
else:
export_args = config.get("export_args", None) or {}
if export_args:
fps = export_args.get("fps", 24)
else:
fps = 24
temp_vid_paths = []
with tempfile.TemporaryDirectory() as tmpdir:
for idx, vid in enumerate(images_for_prompt):
vid_path = os.path.join(tmpdir, f"{idx}.mp4")
export_to_video(vid, vid_path, fps=fps)
temp_vid_paths.append(vid_path)
verifier_inputs = []
for vid_path in temp_vid_paths:
frames = prepare_video_frames(vid_path)
verifier_inputs.append(verifier.prepare_inputs(images=frames, prompts=[prompt] * len(frames)))
print("Scoring with the verifier.")
outputs = verifier.score(inputs=verifier_inputs)
for o in outputs:
assert choice_of_metric in o, o.keys()
assert (
len(outputs) == len(images_for_prompt)
), f"Expected len(outputs) to be same as len(images_for_prompt) but got {len(outputs)=} & {len(images_for_prompt)=}"
results = []
for json_dict, seed_val, noise in zip(outputs, seeds_used, noises_used):
# Merge verifier outputs with noise info.
merged = {**json_dict, "noise": noise, "seed": seed_val}
results.append(merged)
def f(x):
# If the verifier output is a dict, assume it contains a "score" key.
if isinstance(x[choice_of_metric], dict):
return x[choice_of_metric]["score"]
return x[choice_of_metric]
sorted_list = sorted(results, key=lambda x: f(x), reverse=True)
topk_scores = sorted_list[:topk]
# Print debug information.
for ts in topk_scores:
print(f"Prompt='{prompt}' | Best seed={ts['seed']} | Score={ts[choice_of_metric]}")
best_img_path = os.path.join(
root_dir, f"{prompt_filename}_i@{search_round}_s@{topk_scores[0]['seed']}.{extension_to_use}"
)
datapoint = {
"prompt": prompt,
"search_round": search_round,
"num_noises": len(noises),
"best_noise_seed": topk_scores[0]["seed"],
"best_noise": topk_scores[0]["noise"],
"best_score": topk_scores[0][choice_of_metric],
"choice_of_metric": choice_of_metric,
"best_img_path": best_img_path,
}
# Check if the neighbors have any improvements (zero-order only).
search_method = search_args.get("search_method", "random") if search_args else "random"
if search_args and search_method == "zero-order":
first_score = f(results[0])
neighbors_with_better_score = any(f(item) > first_score for item in results[1:])
datapoint["neighbors_improvement"] = neighbors_with_better_score
# Serialize.
if search_method == "zero-order":
if datapoint["neighbors_improvement"]:
serialize_artifacts(images_info, prompt, search_round, root_dir, datapoint, **export_args)
else:
print("Skipping serialization as there was no improvement in this round.")
elif search_method == "random":
serialize_artifacts(images_info, prompt, search_round, root_dir, datapoint, **export_args)
return datapoint
@torch.no_grad()
def main():
# === Load configuration and CLI arguments ===
args = parse_cli_args()
with open(args.pipeline_config_path, "r") as f:
config = json.load(f)
config.update(vars(args))
search_args = config["search_args"]
search_rounds = search_args["search_rounds"]
search_method = search_args.get("search_method", "random")
num_prompts = config["num_prompts"]
# === Create output directory ===
current_datetime = datetime.now().strftime("%Y%m%d_%H%M%S")
pipeline_name = config.pop("pretrained_model_name_or_path")
verifier_name = config["verifier_args"]["name"]
choice_of_metric = config["verifier_args"]["choice_of_metric"]
output_dir = os.path.join(
"output",
MODEL_NAME_MAP[pipeline_name],
verifier_name,
choice_of_metric,
current_datetime,
)
os.makedirs(output_dir, exist_ok=True)
print(f"Artifacts will be saved to: {output_dir}")
with open(os.path.join(output_dir, "config.json"), "w") as f:
json.dump(config, f, indent=4)
# === Load prompts ===
if args.prompt is None:
with open("prompts_open_image_pref_v1.txt", "r", encoding="utf-8") as f:
prompts = [line.strip() for line in f if line.strip()]
if num_prompts != "all":
prompts = prompts[:num_prompts]
else:
prompts = [args.prompt]
print(f"Using {len(prompts)} prompt(s).")
# === Set up the image-generation pipeline ===
torch_dtype = TORCH_DTYPE_MAP[config.pop("torch_dtype")]
fp_kwargs = {"pretrained_model_name_or_path": pipeline_name, "torch_dtype": torch_dtype}
if "Wan" in pipeline_name:
# As per recommendations from https://huggingface.co/docs/diffusers/main/en/api/pipelines/wan.
from diffusers import AutoencoderKLWan
vae = AutoencoderKLWan.from_pretrained(pipeline_name, subfolder="vae", torch_dtype=torch.float32)
fp_kwargs.update({"vae": vae})
pipe = DiffusionPipeline.from_pretrained(**fp_kwargs)
if not config.get("use_low_gpu_vram", False):
pipe = pipe.to("cuda:0")
pipe.set_progress_bar_config(disable=True)
# === Load verifier model ===
verifier_args = config["verifier_args"]
verifier_cls = SUPPORTED_VERIFIERS.get(verifier_args["name"])
if verifier_cls is None:
raise ValueError("Verifier class evaluated to be `None`. Make sure the dependencies are installed properly.")
verifier = verifier_cls(**verifier_args)
# === Main loop: For each prompt and each search round ===
pipeline_call_args = config["pipeline_call_args"].copy()
for prompt in tqdm(prompts, desc="Processing prompts"):
search_round = 1
# For zero-order search, we store the best datapoint per round.
best_datapoint_per_round = {}
while search_round <= search_rounds:
# Determine the number of noise samples.
if search_method == "zero-order":
num_noises_to_sample = 1
else:
num_noises_to_sample = 2**search_round
print(f"\n=== Prompt: {prompt} | Round: {search_round} ===")
# --- Generate noise pool ---
should_regenate_noise = True
previous_round = search_round - 1
if previous_round in best_datapoint_per_round:
was_improvement = best_datapoint_per_round[previous_round]["neighbors_improvement"]
if was_improvement:
should_regenate_noise = False
# For subsequent rounds in zero-order: use best noise from previous round.
# This happens ONLY if there was an improvement with the neighbors in the
# previous round, otherwise round is progressed with newly sampled noise.
if should_regenate_noise:
# Standard noise sampling.
if search_method == "zero-order" and search_round != 1:
print("Regenerating base noise because the previous round was rejected.")
noises = get_noises(
max_seed=MAX_SEED,
num_samples=num_noises_to_sample,
dtype=torch_dtype,
fn=get_latent_prep_fn(pipeline_name),
**pipeline_call_args,
)
else:
if best_datapoint_per_round[previous_round]:
if best_datapoint_per_round[previous_round]["neighbors_improvement"]:
print("Using the best noise from the previous round.")
prev_dp = best_datapoint_per_round[previous_round]
noises = {int(prev_dp["best_noise_seed"]): prev_dp["best_noise"]}
if search_method == "zero-order":
# Process the noise to generate neighbors.
base_seed, base_noise = next(iter(noises.items()))
neighbors = generate_neighbors(
base_noise, threshold=search_args["threshold"], num_neighbors=search_args["num_neighbors"]
).squeeze(0)
# Concatenate the base noise with its neighbors.
neighbors_and_noise = torch.cat([base_noise, neighbors], dim=0)
new_noises = {}
for i, noise_tensor in enumerate(neighbors_and_noise):
new_noises[base_seed + i] = noise_tensor.unsqueeze(0)
noises = new_noises
print(f"Number of noise samples for prompt '{prompt}': {len(noises)}")
# --- Sampling, verifying, and saving artifacts ---
datapoint = sample(
noises=noises,
prompt=prompt,
search_round=search_round,
pipe=pipe,
verifier=verifier,
topk=TOPK,
root_dir=output_dir,
config=config,
)
if search_method == "zero-order":
# Update the best datapoint for zero-order.
if datapoint["neighbors_improvement"]:
best_datapoint_per_round[search_round] = datapoint
search_round += 1
if __name__ == "__main__":
main()