-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathInference.lean
523 lines (433 loc) · 18.1 KB
/
Inference.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
-- https://plfa.github.io/Inference/
import Plfl.Init
import Plfl.More
namespace Inference
-- https://plfa.github.io/Inference/#syntax
open String
def Sym : Type := String deriving BEq, DecidableEq, Repr
inductive Ty where
/-- Native natural type made of 𝟘 and ι. -/
| nat : Ty
/-- Arrow type. -/
| fn : Ty → Ty → Ty
/-- Product type. -/
| prod: Ty → Ty → Ty
deriving BEq, DecidableEq, Repr
namespace Notation
open Ty
scoped notation "ℕt" => nat
scoped infixr:70 " =⇒ " => fn
instance : Mul Ty where mul := .prod
end Notation
open Notation
abbrev Context : Type := List (Sym × Ty)
namespace Context
abbrev extend (c : Context) (s : Sym) (t : Ty) : Context := ⟨s, t⟩ :: c
end Context
namespace Notation
open Context
-- The goal is to make `_‚_⦂_` work like an `infixl`.
-- https://matklad.github.io/2020/04/13/simple-but-powerful-pratt-parsing.html#From-Precedence-to-Binding-Power
-- `‚` is not a comma! See: <https://www.compart.com/en/unicode/U+201A>
notation:50 c "‚ " s:51 " ⦂ " t:51 => extend c s t
end Notation
open Notation
/-
An attribute is said to be Synthesized,
if its parse tree node value is determined by the attribute value at its *child* nodes.
An attribute is said to be Inherited,
if its parse tree node value is determined by the attribute value at its *parent and/or siblings*.
<https://www.geeksforgeeks.org/differences-between-synthesized-and-inherited-attributes/>
-/
mutual
/--
A term with synthesized types.
The main term in a constructor is typed via inheritance.
-/
inductive TermS where
| var : Sym → TermS
| ap : TermS → TermI → TermS
| prod : TermS → TermS → TermS
| syn : TermI → Ty → TermS
deriving BEq, Repr
-- * `DecidableEq` derivations are not yet supported in `mutual` blocks.
-- See: <https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/.22default.20handlers.22.20when.20deriving.20DecidableEq/near/275722237>
/--
A term with inherited types.
The main term in an eliminator is typed via synthesis.
-/
inductive TermI where
| lam : Sym → TermI → TermI
| zero : TermI
| succ : TermI → TermI
| case : TermS → TermI → Sym → TermI → TermI
| mu : Sym → TermI → TermI
| fst : TermS → TermI
| snd : TermS → TermI
| inh : TermS → TermI
deriving BEq, Repr
end
namespace Notation
open TermS TermI
scoped notation:50 "ƛ " v " : " d => lam v d
scoped notation:50 " μ " v " : " d => mu v d
scoped notation:max "𝟘? " e " [zero: " o " |succ " n " : " i " ] " => case e o n i
scoped infixr:min " $ " => ap
-- scoped infix:60 " ↓ " => syn
-- scoped postfix:60 "↑ " => inh
scoped infixl:70 " □ " => ap
scoped prefix:80 "ι " => succ
scoped prefix:90 "` " => var
scoped notation "𝟘" => zero
end Notation
-- https://plfa.github.io/Inference/#example-terms
abbrev two : TermI := ι ι 𝟘
-- * The coercion can only happen in this direction,
-- since the other direction requires an extra type annotation.
instance : Coe TermS TermI where coe := TermI.inh
@[simp] abbrev TermI.the := TermS.syn
abbrev add : TermS :=
(μ "+" : ƛ "m" : ƛ "n" :
𝟘? `"m"
[zero: `"n"
|succ "m" : ι (`"+" □ `"m" □ `"n")]
).the (ℕt =⇒ ℕt =⇒ ℕt)
abbrev mul : TermS :=
(μ "*" : ƛ "m" : ƛ "n" :
𝟘? `"m"
[zero: 𝟘
|succ "m": add □ `"n" $ `"*" □ `"m" □ `"n"]
).the (ℕt =⇒ ℕt =⇒ ℕt)
-- Note that the typing is only required for `add` due to the rule for `ap`.
abbrev four : TermS := add □ two □ two
/--
The Church numeral Ty.
-/
@[simp] abbrev Ch (t : Ty := ℕt) : Ty := (t =⇒ t) =⇒ t =⇒ t
-- Church encoding...
abbrev succC : TermI := ƛ "n" : ι `"n"
abbrev oneC : TermI := ƛ "s" : ƛ "z" : `"s" $ `"z"
abbrev twoC : TermI := ƛ "s" : ƛ "z" : `"s" $ `"s" $ `"z"
abbrev addC : TermS :=
(ƛ "m" : ƛ "n" : ƛ "s" : ƛ "z" : `"m" □ `"s" $ `"n" □ `"s" □ `"z"
).the (Ch =⇒ Ch =⇒ Ch)
-- Note that the typing is only required for `addC` due to the rule for `ap`.
abbrev four' : TermS := addC □ twoC □ twoC □ succC □ 𝟘
-- https://plfa.github.io/Inference/#bidirectional-type-checking
/--
A lookup judgement.
`Lookup c s ts` means that `s` is of type `ts` by _looking up_ the context `c`.
-/
inductive Lookup : Context → Sym → Ty → Type where
| z : Lookup (Γ‚ x ⦂ a) x a
| s : x ≠ y → Lookup Γ x a → Lookup (Γ‚ y ⦂ b) x a
deriving DecidableEq
namespace Lookup
-- https://github.com/arthurpaulino/lean4-metaprogramming-book/blob/d6a227a63c55bf13d49d443f47c54c7a500ea27b/md/main/tactics.md#tactics-by-macro-expansion
/--
`elem` validates the type of a variable by looking it up in the current context.
This tactic fails when the lookup fails.
-/
scoped syntax "elem" : tactic
macro_rules
| `(tactic| elem) =>
`(tactic| repeat (first | apply Lookup.s (by trivial) | exact Lookup.z))
-- https://github.com/arthurpaulino/lean4-metaprogramming-book/blob/d6a227a63c55bf13d49d443f47c54c7a500ea27b/md/main/macros.md#simplifying-macro-declaration
scoped syntax "get_elem" (ppSpace term) : tactic
macro_rules | `(tactic| get_elem $n) => match n.1.toNat with
| 0 => `(tactic| exact Lookup.z)
| n+1 => `(tactic| apply Lookup.s (by trivial); get_elem $(Lean.quote n))
end Lookup
namespace Notation
open Context Lookup
scoped notation:40 Γ " ∋ " m " ⦂ " a:51 => Lookup Γ m a
scoped macro "♯ " n:term:90 : term => `(by get_elem $n)
end Notation
instance : Repr (Γ ∋ m ⦂ a) where reprPrec i n := "♯" ++ reprPrec n (sizeOf i)
#eval @Lookup.z (∅‚ "x" ⦂ ℕt) "x" ℕt
mutual
/--
Typing of `TermS` terms.
-/
inductive TyS : Context → TermS → Ty → Type where
| var : Γ ∋ x ⦂ a → TyS Γ (` x) a
| ap: TyS Γ l (a =⇒ b) → TyI Γ m a → TyS Γ (l □ m) b
| prod: TyS Γ m a → TyS Γ n b → TyS Γ (.prod m n) (a * b)
| syn : TyI Γ m a → TyS Γ (m.the a) a
deriving Repr
/--
Typing of `TermI` terms.
-/
inductive TyI : Context → TermI → Ty → Type where
| lam : TyI (Γ‚ x ⦂ a) n b → TyI Γ (ƛ x : n) (a =⇒ b)
| zero : TyI Γ 𝟘 ℕt
| succ : TyI Γ m ℕt → TyI Γ (ι m) ℕt
| case
: TyS Γ l ℕt → TyI Γ m a → TyI (Γ‚ x ⦂ ℕt) n a
→ TyI Γ (𝟘? l [zero: m |succ x : n]) a
| mu : TyI (Γ‚ x ⦂ a) n a → TyI Γ (μ x : n) a
| fst: TyS Γ p (a * b) → TyI Γ (.fst p) a
| snd: TyS Γ p (a * b) → TyI Γ (.snd p) b
| inh : TyS Γ m a → TyI Γ m a
deriving Repr
end
instance : Coe (TyI Γ m a) (TyS Γ (m.the a) a) where coe := TyS.syn
instance : Coe (TyS Γ m a) (TyI Γ m a) where coe := TyI.inh
namespace Notation
scoped notation:40 Γ " ⊢ " m " ⇡ " a:51 => TyS Γ m a
scoped notation:40 Γ " ⊢ " m " ↟ " a:51 => TyS Γ (TermS.syn m a) a
scoped notation:40 Γ " ⊢ " m " ⇣ " a:51 => TyI Γ m a
end Notation
abbrev twoTy : Γ ⊢ two ↟ ℕt := open TyS TyI in by
apply_rules [syn, succ, zero]
abbrev addTy : Γ ⊢ add ⇡ (ℕt =⇒ ℕt =⇒ ℕt) := open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh]
<;> elem
-- https://plfa.github.io/Inference/#bidirectional-mul
abbrev mulTy : Γ ⊢ mul ⇡ (ℕt =⇒ ℕt =⇒ ℕt) := open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh,
addTy]
<;> elem
abbrev twoCTy : Γ ⊢ twoC ⇣ Ch := open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh]
<;> elem
abbrev addCTy : Γ ⊢ addC ⇡ (Ch =⇒ Ch =⇒ Ch) := open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh]
<;> elem
-- https://plfa.github.io/Inference/#bidirectional-products
example : Γ ⊢ .prod (two.the ℕt) add ⇡ ℕt * (ℕt =⇒ ℕt =⇒ ℕt)
:= open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh,
twoTy, addTy]
<;> elem
example : Γ ⊢ .fst (.prod (two.the ℕt) add) ↟ ℕt
:= open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh,
twoTy]
<;> elem
example : Γ ⊢ .snd (.prod (two.the ℕt) add) ↟ (ℕt =⇒ ℕt =⇒ ℕt)
:= open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh,
addTy]
<;> elem
-- https://plfa.github.io/Inference/#prerequisites
/-
Nothing to do. Relevant definitions have been derived.
-/
-- https://plfa.github.io/Inference/#unique-types
theorem Lookup.unique (i : Γ ∋ x ⦂ a) (j : Γ ∋ x ⦂ b) : a = b := by
cases i with try trivial
| z => cases j <;> trivial
| s => cases j with try trivial
| s => apply unique <;> trivial
theorem TyS.unique (t : Γ ⊢ x ⇡ a) (u : Γ ⊢ x ⇡ b) : a = b := by
match t with
| .var i => cases u with | var j => apply Lookup.unique <;> trivial
| .ap l _ => cases u with | ap l' _ => injection unique l l'
| .prod m n => cases u with | prod m' n' => congr; exact unique m m'; exact unique n n'
| .syn _ => cases u with | syn _ => trivial
-- https://plfa.github.io/Inference/#lookup-type-of-a-variable-in-the-context
lemma Lookup.empty_ext_empty
: x ≠ y
→ IsEmpty (Σ a, Γ ∋ x ⦂ a)
→ IsEmpty (Σ a, Γ‚ y ⦂ b ∋ x ⦂ a)
:= by
intro n ai; is_empty; intro ⟨a, i⟩; apply ai.false; exists a
cases i <;> trivial
def Lookup.lookup (Γ : Context) (x : Sym) : Decidable' (Σ a, Γ ∋ x ⦂ a) := by
match Γ, x with
| [], _ => left; is_empty; nofun
| ⟨y, b⟩ :: Γ, x =>
if h : x = y then
right; subst h; exact ⟨b, .z⟩
else match lookup Γ x with
| .inr ⟨a, i⟩ => right; refine ⟨a, .s ?_ i⟩; trivial
| .inl n => left; refine empty_ext_empty ?_ n; trivial
-- https://plfa.github.io/Inference/#promoting-negations
lemma TyS.empty_arg
: Γ ⊢ l ⇡ a =⇒ b
→ IsEmpty (Γ ⊢ m ⇣ a)
→ IsEmpty (Σ b', Γ ⊢ l □ m ⇡ b')
:= by
intro tl n; is_empty; intro ⟨b', .ap tl' tm'⟩
injection tl.unique tl'; rename_i h _; apply n.false; rwa [←h] at tm'
lemma TyS.empty_switch : Γ ⊢ m ⇡ a → a ≠ b → IsEmpty (Γ ⊢ m ⇡ b) := by
intro ta n; is_empty; intro tb; have := ta.unique tb; contradiction
mutual
def TermS.infer (m : TermS) (Γ : Context) : Decidable' (Σ a, Γ ⊢ m ⇡ a) := by
match m with
| ` x => match Lookup.lookup Γ x with
| .inr ⟨a, i⟩ => right; exact ⟨a, .var i⟩
| .inl n => left; is_empty; intro ⟨a, .var _⟩; apply n.false; exists a
| l □ m => match l.infer Γ with
| .inr ⟨a =⇒ b, tab⟩ => match m.infer Γ a with
| .inr ta => right; exact ⟨b, .ap tab ta⟩
| .inl n => left; exact tab.empty_arg n
| .inr ⟨ℕt, t⟩ => left; is_empty; intro ⟨_, .ap tl _⟩; injection t.unique tl
| .inr ⟨.prod _ _, t⟩ => left; is_empty; intro ⟨_, .ap tl _⟩; injection t.unique tl
| .inl n => left; is_empty; intro ⟨a, .ap tl _⟩; rename_i b _; exact n.false ⟨b =⇒ a, tl⟩
| .prod m n => match m.infer Γ, n.infer Γ with
| .inr ⟨a, tm⟩, .inr ⟨b, tn⟩ => right; exact ⟨a * b, tm.prod tn⟩
| .inr _, .inl nn => left; is_empty; intro ⟨_, tmn⟩; cases tmn; apply nn.false; constructor <;> trivial
| .inl nm, _ => left; is_empty; intro ⟨_, .prod tm _⟩; apply nm.false; constructor <;> trivial
| .syn m a => match m.infer Γ a with
| .inr t => right; exact ⟨a, t⟩
| .inl n => left; is_empty; intro ⟨a', t'⟩; cases t'; apply n.false; trivial
def TermI.infer (m : TermI) (Γ : Context) (a : Ty) : Decidable' (Γ ⊢ m ⇣ a) := by
match m with
| ƛ x : n => match a with
| a =⇒ b => match n.infer (Γ‚ x ⦂ a) b with
| .inr t => right; exact .lam t
| .inl n => left; is_empty; intro (.lam t); exact n.false t
| ℕt => left; is_empty; nofun
| .prod _ _ => left; is_empty; nofun
| 𝟘 => match a with
| ℕt => right; exact .zero
| _ =⇒ _ => left; is_empty; nofun
| .prod _ _ => left; is_empty; nofun
| ι n => match a with
| ℕt => match n.infer Γ ℕt with
| .inr t => right; exact .succ t
| .inl n => left; is_empty; intro (.succ t); exact n.false t
| _ =⇒ _ => left; is_empty; nofun
| .prod _ _ => left; is_empty; nofun
| .case l m x n => match l.infer Γ with
| .inr ⟨ℕt, tl⟩ => match m.infer Γ a, n.infer (Γ‚ x ⦂ ℕt) a with
| .inr tm, .inr tn => right; exact .case tl tm tn
| .inl nm, _ => left; is_empty; intro (.case _ _ _); apply nm.false; trivial
| .inr _, .inl nn => left; is_empty; intro (.case _ _ _); apply nn.false; trivial
| .inr ⟨_ =⇒ _, tl⟩ => left; is_empty; intro (.case t _ _); injection t.unique tl
| .inr ⟨.prod _ _, tl⟩ => left; is_empty; intro (.case t _ _); injection t.unique tl
| .inl nl => left; is_empty; intro (.case _ _ _); apply nl.false; constructor <;> trivial
| μ x : n => match n.infer (Γ‚ x ⦂ a) a with
| .inr t => right; exact .mu t
| .inl n => left; is_empty; intro (.mu t); exact n.false t
| .fst m => match m.infer Γ with
| .inr ⟨.prod b _, tm⟩ => if h : a = b then
right; subst h; exact .fst tm
else
left; is_empty; intro (.fst t); injection t.unique tm; contradiction
| .inr ⟨ℕt, tm⟩ => left; is_empty; intro (.fst t); injection t.unique tm
| .inr ⟨_ =⇒ _, tm⟩ => left; is_empty; intro (.fst t); injection t.unique tm
| .inl n => left; is_empty; intro (.fst t); apply n.false; constructor <;> trivial
| .snd m => match m.infer Γ with
| .inr ⟨.prod _ b, tm⟩ => if h : a = b then
right; subst h; exact .snd tm
else
left; is_empty; intro (.snd t); injection t.unique tm; contradiction
| .inr ⟨ℕt, tm⟩ => left; is_empty; intro (.snd t); injection t.unique tm
| .inr ⟨_ =⇒ _, tm⟩ => left; is_empty; intro (.snd t); injection t.unique tm
| .inl n => left; is_empty; intro (.snd t); apply n.false; constructor <;> trivial
| .inh m => match m.infer Γ with
| .inr ⟨b, tm⟩ => if h : a = b then
right; subst h; exact .inh tm
else
left; rw [←Ne.def] at h; is_empty; intro (.inh _)
apply (tm.empty_switch h.symm).false; trivial
| .inl nm => left; is_empty; intro (.inh tm); apply nm.false; exists a
end
-- https://plfa.github.io/Inference/#testing-the-example-terms
abbrev fourTy : Γ ⊢ four ⇡ ℕt := open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh,
addTy, twoTy]
<;> elem
example : four.infer ∅ = .inr ⟨ℕt, fourTy⟩ := by rfl
abbrev four'Ty : Γ ⊢ four' ⇡ ℕt := open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh,
addCTy, twoCTy]
<;> elem
example : four'.infer ∅ = .inr ⟨ℕt, four'Ty⟩ := by rfl
abbrev four'': TermS := mul □ two □ two
abbrev four''Ty : Γ ⊢ four'' ⇡ ℕt := open TyS TyI Lookup in by
repeat apply_rules
[var, ap, prod, syn,
lam, zero, succ, case, mu, fst, snd, inh,
addCTy, twoCTy]
<;> elem
example : four''.infer ∅ = .inr ⟨ℕt, four''Ty⟩ := by rfl
-- https://plfa.github.io/Inference/#testing-the-error-cases
/-
Sadly this won't work for now due to limitations with mutual recursions.
See: <https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/.E2.9C.94.20Proof.20of.20an.20inductive's.20variant.3F/near/358901115>
-/
-- example := show ((ƛ "x" : `"y").the (ℕt =⇒ ℕt)).infer ∅ = .inl _ by rfl
/-
This won't work either, probably due to similar reasons...
-/
-- instance : Decidable (Nonempty (Σ a, Γ ⊢ m ⇡ a)) := (m.infer Γ).toDecidable
-- example := let m := (ƛ "x" : `"y").the (ℕt =⇒ ℕt); show IsEmpty (Σ a, ∅ ⊢ m ⇡ a) by
-- rw [←not_nonempty_iff]; decide
-- Unbound variable:
#eval ((ƛ "x" : `"y").the (ℕt =⇒ ℕt)).infer ∅
-- Argument in application is ill typed:
#eval (add □ succC).infer ∅
-- Function in application is ill typed:
#eval (add □ succC □ two).infer ∅
-- Function in application has type natural:
#eval (two.the ℕt □ two).infer ∅
-- Abstraction inherits type natural:
#eval (twoC.the ℕt).infer ∅
-- Zero inherits a function type:
#eval (𝟘.the (ℕt =⇒ ℕt)).infer ∅
-- Successor inherits a function type:
#eval (two.the (ℕt =⇒ ℕt)).infer ∅
-- Successor of an ill-typed term:
#eval ((ι twoC).the ℕt).infer ∅
-- Case of a term with a function type:
#eval ((𝟘? twoC.the Ch [zero: 𝟘 |succ "x" : `"x"]).the ℕt).infer ∅
-- Case of an ill-typed term:
#eval ((𝟘? twoC.the ℕt [zero: 𝟘 |succ "x" : `"x"]).the ℕt).infer ∅
-- Inherited and synthesized types disagree in a switch:
#eval ((ƛ "x" : `"x").the (ℕt =⇒ ℕt =⇒ ℕt)).infer ∅
-- https://plfa.github.io/Inference/#erasure
def Ty.erase : Ty → More.Ty
| ℕt => .nat
| a =⇒ b => .fn a.erase b.erase
| .prod a b => a.erase * b.erase
def Context.erase : Context → More.Context
| [] => ∅
| ⟨_, a⟩ :: Γ => a.erase :: Context.erase Γ
def Lookup.erase : Γ ∋ x ⦂ a → More.Lookup Γ.erase a.erase
| .z => .z
| .s _ i => .s i.erase
mutual
def TyS.erase : Γ ⊢ m ⇡ a → More.Term Γ.erase a.erase
| .var i => .var i.erase
| .ap l m => .ap l.erase m.erase
| .prod m n => .prod m.erase n.erase
| .syn m => m.erase
def TyI.erase : Γ ⊢ m ⇣ a → More.Term Γ.erase a.erase
| .lam m => .lam m.erase
| .zero => .zero
| .succ m => .succ m.erase
| .case l m n => .case l.erase m.erase n.erase
| .mu m => .mu m.erase
| .fst m => .fst m.erase
| .snd m => .snd m.erase
| .inh m => m.erase
end
example : fourTy.erase (Γ := ∅) = More.Term.four := by rfl
-- https://plfa.github.io/Inference/#exercise-inference-multiplication-recommended
example : mul.infer ∅ = .inr ⟨ℕt =⇒ ℕt =⇒ ℕt, mulTy⟩ := by rfl
-- ! BOOM! The commented lines below are very CPU/RAM-intensive, and might even make LEAN4 leak memory!
-- example : mulTy.erase (Γ := ∅) = More.Term.mul := by rfl
-- example : four'Ty.erase (Γ := ∅) = More.Term.four' := by rfl
-- example : four''Ty.erase (Γ := ∅) = More.Term.four'' := by rfl