-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathMore.lean
587 lines (512 loc) · 20.7 KB
/
More.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
-- https://plfa.github.io/More/
import Plfl.Init
-- This module was extended from the original one for <https://plfa.github.io/DeBruijn/>.
namespace More
-- https://plfa.github.io/More/#types
inductive Ty where
/-- Native natural type made of 𝟘 and ι. -/
| nat : Ty
/-- Primitive natural type, a simple wrapper around LEAN's own ℕ type. -/
| natP : Ty
/-- Product type. -/
| prod : Ty → Ty → Ty
/-- Sum type. -/
| sum : Ty → Ty → Ty
/-- Arrow type. -/
| fn : Ty → Ty → Ty
/-- Unit type. -/
| unit : Ty
/-- Void type. -/
| void : Ty
/-- List type. -/
| list : Ty → Ty
deriving BEq, DecidableEq, Repr
namespace Notation
open Ty
scoped notation "ℕt" => nat
scoped notation "ℕp" => natP
-- Operator overloadings for `prod` and `sum` types.
instance : Mul Ty where mul := prod
instance : Add Ty where add := sum
scoped infixr:70 " =⇒ " => fn
scoped notation "◯" => unit
scoped notation "∅" => void
end Notation
open Notation
namespace Ty
example : Ty := (ℕt =⇒ ℕt) =⇒ ℕt
example : Ty := ℕp * ℕt
theorem t_to_t'_ne_t (t t' : Ty) : (t =⇒ t') ≠ t := by
by_contra h; match t with
| nat => contradiction
| fn ta tb => injection h; have := t_to_t'_ne_t ta tb; contradiction
end Ty
-- https://plfa.github.io/DeBruijn/#contexts
abbrev Context : Type := List Ty
namespace Context
abbrev snoc (Γ : Context) (a : Ty) : Context := a :: Γ
abbrev lappend (Γ : Context) (Δ : Context) : Context := Δ ++ Γ
end Context
namespace Notation
open Context
-- `‚` is not a comma! See: <https://www.compart.com/en/unicode/U+201A>
scoped infixl:50 "‚ " => snoc
scoped infixl:45 "‚‚ " => lappend
end Notation
-- https://plfa.github.io/DeBruijn/#variables-and-the-lookup-judgment
inductive Lookup : Context → Ty → Type where
| z : Lookup (Γ‚ t) t
| s : Lookup Γ t → Lookup (Γ‚ t') t
deriving DecidableEq, Repr
namespace Notation
open Lookup
scoped infix:40 " ∋ " => Lookup
-- https://github.com/arthurpaulino/lean4-metaprogramming-book/blob/d6a227a63c55bf13d49d443f47c54c7a500ea27b/md/main/macros.md#simplifying-macro-declaration
scoped syntax "get_elem" (ppSpace term) : term
scoped macro_rules | `(term| get_elem $n) => match n.1.toNat with
| 0 => `(term| Lookup.z)
| n+1 => `(term| Lookup.s (get_elem $(Lean.quote n)))
scoped macro "♯" n:term:90 : term => `(get_elem $n)
end Notation
namespace Lookup
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt := .z
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt := ♯0
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt =⇒ ℕt := .s .z
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt =⇒ ℕt := ♯1
end Lookup
-- https://plfa.github.io/DeBruijn/#terms-and-the-typing-judgment
/--
A term with typing judgement embedded in itself.
-/
inductive Term : Context → Ty → Type where
-- Lookup
| var : Γ ∋ a → Term Γ a
-- Lambda
| lam : Term (Γ‚ a) b → Term Γ (a =⇒ b)
| ap : Term Γ (a =⇒ b) → Term Γ a → Term Γ b
-- Native natural
| zero : Term Γ ℕt
| succ : Term Γ ℕt → Term Γ ℕt
| case : Term Γ ℕt → Term Γ a → Term (Γ‚ ℕt) a → Term Γ a
-- Fixpoint
| mu : Term (Γ‚ a) a → Term Γ a
-- Primitive natural
| prim : ℕ → Term Γ ℕp
| mulP : Term Γ ℕp → Term Γ ℕp → Term Γ ℕp
-- Let expression
| let : Term Γ a → Term (Γ‚ a) b → Term Γ b
-- Product
| prod : Term Γ a → Term Γ b → Term Γ (a * b)
| fst : Term Γ (a * b) → Term Γ a
| snd : Term Γ (a * b) → Term Γ b
-- Product (alternative formulation)
-- | caseProd : Term Γ (a * b) → Term (Γ‚ a‚ b) c → Term Γ c
-- Sum
| left : Term Γ a → Term Γ (a + b)
| right : Term Γ b → Term Γ (a + b)
| caseSum : Term Γ (a + b) → Term (Γ‚ a) c → Term (Γ‚ b) c → Term Γ c
-- Void
| caseVoid : Term Γ ∅ → Term Γ a
-- Unit
| unit : Term Γ ◯
-- List
| nil : Term Γ (.list a)
| cons : Term Γ a → Term Γ (.list a) → Term Γ (.list a)
| caseList : Term Γ (.list a) → Term Γ b → Term (Γ‚ a‚ .list a) b → Term Γ b
deriving DecidableEq, Repr
namespace Notation
open Term
scoped infix:40 " ⊢ " => Term
scoped prefix:50 "ƛ " => lam
scoped prefix:50 "μ " => mu
scoped notation "𝟘? " => case
scoped infixr:min " $ " => ap
scoped infixl:70 " □ " => ap
scoped infixl:70 " ⋄ " => mulP
scoped prefix:80 "ι " => succ
scoped prefix:90 "` " => var
scoped notation "𝟘" => zero
scoped notation "◯" => unit
-- https://plfa.github.io/DeBruijn/#abbreviating-de-bruijn-indices
scoped macro "#" n:term:90 : term => `(`♯$n)
end Notation
namespace Term
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt := #0
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt =⇒ ℕt := #1
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt := #1 $ #0
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt := #1 $ #1 $ #0
example : ∅‚ ℕt =⇒ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#1 $ #1 $ #0)
def ofNat : ℕ → Γ ⊢ ℕt
| 0 => .zero
| n + 1 => .succ <| ofNat n
instance : Coe ℕ (Γ ⊢ ℕt) where coe := ofNat
instance : OfNat (Γ ⊢ ℕt) n where ofNat := ofNat n
-- https://plfa.github.io/DeBruijn/#test-examples
example : Γ ⊢ ℕt := ι ι 𝟘
example : Γ ⊢ ℕt := 2
@[simp] abbrev add : Γ ⊢ ℕt =⇒ ℕt =⇒ ℕt := μ ƛ ƛ (𝟘? (#1) (#0) (ι (#3 □ #0 □ #1)))
abbrev four : Γ ⊢ ℕt := add □ 2 □ 2
/--
The Church numeral Ty.
-/
abbrev Ch (t : Ty) : Ty := (t =⇒ t) =⇒ t =⇒ t
@[simp] abbrev succC : Γ ⊢ ℕt =⇒ ℕt := ƛ ι #0
@[simp] abbrev twoC : Γ ⊢ Ch a := ƛ ƛ (#1 $ #1 $ #0)
@[simp] abbrev addC : Γ ⊢ Ch a =⇒ Ch a =⇒ Ch a := ƛ ƛ ƛ ƛ (#3 □ #1 $ #2 □ #1 □ #0)
abbrev four' : Γ ⊢ ℕt := addC □ twoC □ twoC □ succC □ 𝟘
@[simp] abbrev mul : Γ ⊢ ℕt =⇒ ℕt =⇒ ℕt := μ ƛ ƛ (𝟘? (#1) 𝟘 (add □ #1 $ #3 □ #0 □ #1))
abbrev four'' : Γ ⊢ ℕt := mul □ 2 □ 2
-- https://plfa.github.io/DeBruijn/#exercise-mul-recommended
@[simp] abbrev mulC : Γ ⊢ Ch a =⇒ Ch a =⇒ Ch a := ƛ ƛ ƛ ƛ (#3 □ (#2 □ #1) □ #0)
-- https://plfa.github.io/More/#example
example : ∅ ⊢ ℕp =⇒ ℕp := ƛ #0 ⋄ #0 ⋄ #0
end Term
namespace Subst
-- https://plfa.github.io/DeBruijn/#renaming
/--
If one context maps to another,
the mapping holds after adding the same variable to both contexts.
-/
def ext : (∀ {a}, Γ ∋ a → Δ ∋ a) → Γ‚ b ∋ a → Δ‚ b ∋ a := by
intro ρ; intro
| .z => exact .z
| .s x => refine .s ?_; exact ρ x
/--
If one context maps to another,
then the type judgements are the same in both contexts.
-/
def rename : (∀ {a}, Γ ∋ a → Δ ∋ a) → Γ ⊢ a → Δ ⊢ a := by
intro ρ; intro
| ` x => exact ` (ρ x)
| ƛ n => exact ƛ (rename (ext ρ) n)
| l □ m => exact rename ρ l □ rename ρ m
| 𝟘 => exact 𝟘
| ι n => exact ι (rename ρ n)
| 𝟘? l m n => exact 𝟘? (rename ρ l) (rename ρ m) (rename (ext ρ) n)
| μ n => exact μ (rename (ext ρ) n)
| .prim n => exact .prim n
| m ⋄ n => exact rename ρ m ⋄ rename ρ n
| .let m n => exact .let (rename ρ m) (rename (ext ρ) n)
| .prod m n => exact .prod (rename ρ m) (rename ρ n)
| .fst n => exact .fst (rename ρ n)
| .snd n => exact .snd (rename ρ n)
| .left n => exact .left (rename ρ n)
| .right n => exact .right (rename ρ n)
| .caseSum s l r => exact .caseSum (rename ρ s) (rename (ext ρ) l) (rename (ext ρ) r)
| .caseVoid v => exact .caseVoid (rename ρ v)
| ◯ => exact ◯
| .nil => exact .nil
| .cons m n => exact .cons (rename ρ m) (rename ρ n)
| .caseList l m n => exact .caseList (rename ρ l) (rename ρ m) (rename (ext (ext ρ)) n)
abbrev shift : Γ ⊢ a → Γ‚ b ⊢ a := rename .s
example
: let m : ∅‚ ℕt =⇒ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#1 $ #1 $ #0)
let m' : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#2 $ #2 $ #0)
shift m = m'
:= rfl
-- https://plfa.github.io/DeBruijn/#simultaneous-substitution
/--
If the variables in one context maps to some terms in another,
the mapping holds after adding the same variable to both contexts.
-/
def exts : (∀ {a}, Γ ∋ a → Δ ⊢ a) → Γ‚ b ∋ a → Δ‚ b ⊢ a := by
intro σ; intro
| .z => exact `.z
| .s x => apply shift; exact σ x
/--
General substitution for multiple free variables.
If the variables in one context maps to some terms in another,
then the type judgements are the same before and after the mapping,
i.e. after replacing the free variables in the former with (expanded) terms.
-/
def subst : (∀ {a}, Γ ∋ a → Δ ⊢ a) → Γ ⊢ a → Δ ⊢ a := by
intro σ; intro
| ` i => exact σ i
| ƛ n => exact ƛ (subst (exts σ) n)
| l □ m => exact subst σ l □ subst σ m
| 𝟘 => exact 𝟘
| ι n => exact ι (subst σ n)
| 𝟘? l m n => exact 𝟘? (subst σ l) (subst σ m) (subst (exts σ) n)
| μ n => exact μ (subst (exts σ) n)
| .prim n => exact .prim n
| m ⋄ n => exact subst σ m ⋄ subst σ n
| .let m n => exact .let (subst σ m) (subst (exts σ) n)
| .prod m n => exact .prod (subst σ m) (subst σ n)
| .fst n => exact .fst (subst σ n)
| .snd n => exact .snd (subst σ n)
| .left n => exact .left (subst σ n)
| .right n => exact .right (subst σ n)
| .caseSum s l r => exact .caseSum (subst σ s) (subst (exts σ) l) (subst (exts σ) r)
| .caseVoid v => exact .caseVoid (subst σ v)
| ◯ => exact ◯
| .nil => exact .nil
| .cons m n => exact .cons (subst σ m) (subst σ n)
| .caseList l m n => exact .caseList (subst σ l) (subst σ m) (subst (exts (exts σ)) n)
abbrev subst₁σ (v : Γ ⊢ b) : ∀ {a}, Γ‚ b ∋ a → Γ ⊢ a := by
introv; intro
| .z => exact v
| .s x => exact ` x
/--
Substitution for one free variable `v` in the term `n`.
-/
abbrev subst₁ (v : Γ ⊢ b) (n : Γ‚ b ⊢ a) : Γ ⊢ a := by
refine subst ?_ n; exact subst₁σ v
/--
Substitution for two free variables `v` and `w'` in the term `n`.
-/
abbrev subst₂ (v : Γ ⊢ b) (w : Γ ⊢ c) (n : Γ‚ b‚ c ⊢ a) : Γ ⊢ a := by
refine subst ?_ n; introv; intro
| .z => exact w
| .s .z => exact v
| .s (.s x) => exact ` x
end Subst
namespace Notation
open Subst
scoped notation:90 n "⟦" m "⟧" => subst₁ m n
end Notation
open Subst
namespace Subst
example
: let m : ∅ ⊢ ℕt =⇒ ℕt := ƛ (ι #0)
let m' : ∅‚ ℕt =⇒ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#1 $ #1 $ #0)
let n : ∅ ⊢ ℕt =⇒ ℕt := ƛ (ƛ ι #0) □ ((ƛ ι #0) □ #0)
m'⟦m⟧ = n
:= rfl
example
: let m : ∅‚ ℕt =⇒ ℕt ⊢ ℕt := #0 $ 𝟘
let m' : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ (ℕt =⇒ ℕt) =⇒ ℕt := ƛ (#0 $ #1)
let n : ∅‚ ℕt =⇒ ℕt ⊢ (ℕt =⇒ ℕt) =⇒ ℕt := ƛ (#0 $ #1 $ 𝟘)
m'⟦m⟧ = n
:= rfl
end Subst
inductive Value : Γ ⊢ a → Type where
| lam : Value (ƛ (n : Γ‚ a ⊢ b))
| zero : Value 𝟘
| succ : Value n → Value (ι n)
| prim : (n : ℕ) → Value (@Term.prim Γ n)
| prod : Value (v : Γ ⊢ a) → Value (w : Γ ⊢ b) → Value (.prod v w)
| left : Value v → Value (.left v)
| right : Value v → Value (.right v)
| unit : Value ◯
| nil : Value .nil
| cons : ∀ {v : Γ ⊢ a} {vs : Γ ⊢ .list a}, Value v → Value vs → Value (.cons v vs)
deriving DecidableEq, Repr
namespace Notation
scoped notation "V𝟘" => Value.zero
end Notation
namespace Value
def ofNat : (n : ℕ) → @Value Γ ℕt (Term.ofNat n)
| 0 => V𝟘
| n + 1 => succ <| ofNat n
end Value
-- https://plfa.github.io/DeBruijn/#reduction
/--
`Reduce t t'` says that `t` reduces to `t'` via a given step.
-/
inductive Reduce : (Γ ⊢ a) → (Γ ⊢ a) → Prop where
| lamβ : Value v → Reduce ((ƛ n) □ v) (n⟦v⟧)
| apξ₁ : Reduce l l' → Reduce (l □ m) (l' □ m)
| apξ₂ : Value v → Reduce m m' → Reduce (v □ m) (v □ m')
| zeroβ : Reduce (𝟘? 𝟘 m n) m
| succβ : Value v → Reduce (𝟘? (ι v) m n) (n⟦v⟧)
| succξ : Reduce m m' → Reduce (ι m) (ι m')
| caseξ : Reduce l l' → Reduce (𝟘? l m n) (𝟘? l' m n)
| muβ : Reduce (μ n) (n⟦μ n⟧)
-- https://plfa.github.io/More/#reduction
| mulPξ₁ : Reduce l l' → Reduce (l ⋄ m) (l' ⋄ m)
| mulPξ₂ : Reduce m m' → Reduce (l ⋄ m) (l ⋄ m')
| mulPδ : Reduce ((.prim c) ⋄ (.prim d)) (.prim (c * d))
-- https://plfa.github.io/More/#reduction-1
| letξ : Reduce m m' → Reduce (.let m n) (.let m' n)
| letβ : Value v → Reduce (.let v n) (n⟦v⟧)
-- https://plfa.github.io/More/#reduction-2
| prodξ₁ : Reduce m m' → Reduce (.prod m n) (.prod m' n)
| prodξ₂ : Reduce n n' → Reduce (.prod m n) (.prod m n')
| fstξ : Reduce l l' → Reduce (.fst l) (.fst l')
| fstβ : Value v → Value w → Reduce (.fst (.prod v w)) v
| sndξ : Reduce l l' → Reduce (.snd l) (.snd l')
| sndβ : Value v → Value w → Reduce (.snd (.prod v w)) w
-- https://plfa.github.io/More/#reduction-3
-- | caseProdξ : Reduce l l' → Reduce (.caseProd l m) (.caseProd l' m)
-- | caseProdβ
-- : Value (v : Γ ⊢ a)
-- → Value (w : Γ ⊢ b)
-- → Reduce (.caseProd (.prod v w) (m : Γ‚ a‚ b ⊢ c)) (subst₂ v w m)
-- https://plfa.github.io/More/#reduction-4
| caseSumξ : Reduce s s' → Reduce (.caseSum s l r) (.caseSum s' l r)
| leftξ : Reduce m m' → Reduce (.left m) (.left m')
| leftβ : Value v → Reduce (.caseSum (.left v) l r) (l⟦v⟧)
| rightξ : Reduce m m' → Reduce (.right m) (.right m')
| rightβ : Value v → Reduce (.caseSum (.right v) l r) (r⟦v⟧)
-- https://plfa.github.io/More/#reduction-7
| caseVoidξ : Reduce l l' → Reduce (.caseVoid l) (.caseVoid l')
-- https://plfa.github.io/More/#reduction-8
| caseListξ : Reduce l l' → Reduce (.caseList l m n) (.caseList l' m n)
| nilβ : Reduce (.caseList .nil m n) m
| consξ₁ : Reduce m m' → Reduce (.cons m n) (.cons m' n)
| consξ₂ : Reduce n n' → Reduce (.cons v n) (.cons v n')
| consβ : Reduce (.caseList (.cons v w) m n) (subst₂ v w n)
-- https://plfa.github.io/DeBruijn/#reflexive-and-transitive-closure
namespace Notation
scoped infix:40 " —→ " => Reduce
end Notation
namespace Reduce
/--
A reflexive and transitive closure,
defined as a sequence of zero or more steps of the underlying relation `—→`.
-/
abbrev Clos {Γ a} := Relation.ReflTransGen (α := Γ ⊢ a) Reduce
end Reduce
namespace Notation
scoped infix:20 " —↠ " => Reduce.Clos
end Notation
namespace Reduce.Clos
abbrev refl : m —↠ m := .refl
abbrev tail : (m —↠ n) → (n —→ n') → (m —↠ n') := .tail
abbrev head : (m —→ n) → (n —↠ n') → (m —↠ n') := .head
abbrev single : (m —→ n) → (m —↠ n) := .single
instance : Coe (m —→ n) (m —↠ n) where coe r := .single r
instance : Trans (α := Γ ⊢ a) Clos Reduce Clos where trans c r := c.tail r
instance : Trans (α := Γ ⊢ a) Reduce Reduce Clos where trans r r' := .tail r r'
instance : Trans (α := Γ ⊢ a) Reduce Clos Clos where trans r c := .head r c
end Reduce.Clos
namespace Reduce
-- https://plfa.github.io/DeBruijn/#examples
open Term
example : twoC □ succC □ @zero ∅ —↠ 2 := calc
twoC □ succC □ 𝟘
_ —→ (ƛ (succC $ succC $ #0)) □ 𝟘 := by apply apξ₁; apply lamβ; exact Value.lam
_ —→ (succC $ succC $ 𝟘) := by apply lamβ; exact V𝟘
_ —→ succC □ 1 := by apply apξ₂; apply Value.lam; exact lamβ V𝟘
_ —→ 2 := by apply lamβ; exact Value.ofNat 1
end Reduce
-- https://plfa.github.io/DeBruijn/#values-do-not-reduce
def Value.not_reduce : Value m → ∀ {n}, ¬ m —→ n := by
introv v; intro r
cases v with try contradiction
| succ v => cases r; · case succξ => apply not_reduce v; trivial
| prod => cases r with
| prodξ₁ r => rename_i v _ _; apply not_reduce v; trivial
| prodξ₂ r => rename_i v _; apply not_reduce v; trivial
| left v => cases r; · case leftξ => apply not_reduce v; trivial
| right v => cases r; · case rightξ => apply not_reduce v; trivial
| cons => cases r with
| consξ₁ r => rename_i v _ _; apply not_reduce v; trivial
| consξ₂ r => rename_i v _; apply not_reduce v; trivial
def Reduce.empty_value : m —→ n → IsEmpty (Value m) := by
intro r; is_empty; intro v; exact Value.not_reduce v r
/--
If a term `m` is not ill-typed, then it either is a value or can be reduced.
-/
inductive Progress (m : ∅ ⊢ a) where
| step : (m —→ n) → Progress m
| done : Value m → Progress m
def Progress.progress : (m : ∅ ⊢ a) → Progress m := open Reduce in by
intro
| ` _ => contradiction
| ƛ _ => exact .done .lam
| l □ m => match progress l with
| .step _ => apply step; apply apξ₁; trivial
| .done l => match progress m with
| .step _ => apply step; apply apξ₂ <;> trivial
| .done _ => match l with
| .lam => apply step; apply lamβ; trivial
| 𝟘 => exact .done V𝟘
| ι n => match progress n with
| .step _ => apply step; apply succξ; trivial
| .done _ => apply done; apply Value.succ; trivial
| 𝟘? l m n => match progress l with
| .step _ => apply step; apply caseξ; trivial
| .done v => match v with
| .zero => exact .step zeroβ
| .succ _ => apply step; apply succβ; trivial
| μ _ => exact .step muβ
| .prim n => exact .done (.prim n)
| m ⋄ n => match progress m with
| .step _ => apply step; apply mulPξ₁; trivial
| .done m => match progress n with
| .step _ => apply step; apply mulPξ₂; trivial
| .done n => match m, n with
| .prim m, .prim n => exact .step mulPδ
| .let m n => match progress m with
| .step _ => apply step; apply letξ; trivial
| .done m => apply step; apply letβ; trivial
| .prod m n => match progress m with
| .step _ => apply step; apply prodξ₁; trivial
| .done m => match progress n with
| .step _ => apply step; apply prodξ₂; trivial
| .done n => exact .done (.prod m n)
| .fst n => match progress n with
| .step _ => apply step; apply fstξ; trivial
| .done n => match n with
| .prod v w => apply step; apply fstβ <;> trivial
| .snd n => match progress n with
| .step _ => apply step; apply sndξ; trivial
| .done n => match n with
| .prod v w => apply step; apply sndβ <;> trivial
| .left n => match progress n with
| .step _ => apply step; apply leftξ; trivial
| .done n => exact .done (.left n)
| .right n => match progress n with
| .step _ => apply step; apply rightξ; trivial
| .done n => exact .done (.right n)
| .caseSum s l r => match progress s with
| .step _ => apply step; apply caseSumξ; trivial
| .done s => match s with
| .left _ => apply step; apply leftβ; trivial
| .right _ => apply step; apply rightβ; trivial
| .caseVoid v => match progress v with
| .step _ => apply step; apply caseVoidξ; trivial
| .done _ => contradiction
| ◯ => exact .done .unit
| .nil => exact .done .nil
| .cons m n => match progress m with
| .step _ => apply step; apply consξ₁; trivial
| .done _ => match progress n with
| .step _ => apply step; apply consξ₂; trivial
| .done _ => refine .done (.cons ?_ ?_) <;> trivial
| .caseList l m n => match progress l with
| .step _ => apply step; apply caseListξ; trivial
| .done l => match l with
| .nil => apply step; exact nilβ
| .cons _ w => apply step; exact consβ
open Progress (progress)
inductive Result (n : Γ ⊢ a) where
| done (val : Value n)
| dnf
deriving BEq, DecidableEq, Repr
inductive Steps (l : Γ ⊢ a) where
| steps : ∀{n : Γ ⊢ a}, (l —↠ n) → Result n → Steps l
def eval (gas : ℕ) (l : ∅ ⊢ a) : Steps l :=
if gas = 0 then
⟨.refl, .dnf⟩
else
match progress l with
| .done v => .steps .refl <| .done v
| .step r =>
let ⟨rs, res⟩ := eval (gas - 1) (by trivial)
⟨Trans.trans r rs, res⟩
section examples
open Term
-- def x : ℕ := x + 1
abbrev succμ : ∅ ⊢ ℕt := μ ι #0
abbrev evalRes (l : ∅ ⊢ a) (gas := 100) := (eval gas l).3
#eval evalRes (gas := 3) succμ
#eval evalRes <| add □ 2 □ 1
#eval evalRes <| mul □ 2 □ 2
-- Prim
#eval evalRes <| .prim 2 ⋄ .prim 3
-- Let
#eval evalRes <| .let (.prim 6) (#0 ⋄ .prim 7)
#eval evalRes <| .let (.prim 3) <| .let (.prim 4) (.prod (#1) (#0))
-- Prod, Unit
#eval evalRes <| .fst <| .snd <| .prod ◯ (.prod (.prim 6) (ι ι 0))
-- Sum
#eval evalRes <| (.left (.prim 3) : ∅ ⊢ ℕp + ℕt)
#eval evalRes <| (.right 4 : ∅ ⊢ ℕp + ℕt)
#eval evalRes <| .caseSum (.right 1 : ∅ ⊢ ℕp + ℕt) 𝟘 (.succ (#0))
-- List
#eval evalRes <| .nil (a := ℕt)
#eval evalRes <| .cons (ι 𝟘) <| .cons 𝟘 .nil
#eval evalRes <| .caseList (.cons (ι 𝟘) <| .cons 𝟘 .nil) 𝟘 (#1 /- 0:cdr, 1:car -/)
end examples