diff --git a/doc/python/horizontal-bar-charts.md b/doc/python/horizontal-bar-charts.md index 1daf8c6505..1c3c9f5078 100644 --- a/doc/python/horizontal-bar-charts.md +++ b/doc/python/horizontal-bar-charts.md @@ -91,8 +91,8 @@ fig.add_trace(go.Bar( name='SF Zoo', orientation='h', marker=dict( - color='rgba(246, 78, 139, 0.6)', - line=dict(color='rgba(246, 78, 139, 1.0)', width=3) + color='hotpink', + line=dict(color='deeppink', width=3) ) )) fig.add_trace(go.Bar( @@ -101,8 +101,8 @@ fig.add_trace(go.Bar( name='LA Zoo', orientation='h', marker=dict( - color='rgba(58, 71, 80, 0.6)', - line=dict(color='rgba(58, 71, 80, 1.0)', width=3) + color='dimgray', + line=dict(color='black', width=3) ) )) @@ -155,16 +155,15 @@ fig.show() ### Color Palette for Bar Chart +This bar chart uses a sequential palette to show gradations of responses. Additional color options for sequential palettes are available at [The Urban Institute](https://urbaninstitute.github.io/graphics-styleguide/#color) and [Colorbrewer](https://colorbrewer2.org/#type=sequential) + ```python import plotly.graph_objects as go top_labels = ['Strongly
agree', 'Agree', 'Neutral', 'Disagree', 'Strongly
disagree'] -colors = ['rgba(38, 24, 74, 0.8)', 'rgba(71, 58, 131, 0.8)', - 'rgba(122, 120, 168, 0.8)', 'rgba(164, 163, 204, 0.85)', - 'rgba(190, 192, 213, 1)'] - +colors = ['DarkBlue', 'MediumBlue', 'DarkSlateBlue', 'mediumpurple', 'thistle'] x_data = [[21, 30, 21, 16, 12], [24, 31, 19, 15, 11], [27, 26, 23, 11, 13], @@ -185,7 +184,7 @@ for i in range(0, len(x_data[0])): orientation='h', marker=dict( color=colors[i], - line=dict(color='rgb(248, 248, 249)', width=1) + line=dict(color='ghostwhite', width=1) ) )) @@ -204,8 +203,8 @@ fig.update_layout( zeroline=False, ), barmode='stack', - paper_bgcolor='rgb(248, 248, 255)', - plot_bgcolor='rgb(248, 248, 255)', + paper_bgcolor='lavenderblush', + plot_bgcolor='lavenderblush', margin=dict(l=120, r=10, t=140, b=80), showlegend=False, ) @@ -219,14 +218,14 @@ for yd, xd in zip(y_data, x_data): xanchor='right', text=str(yd), font=dict(family='Arial', size=14, - color='rgb(67, 67, 67)'), + color='dimgray'), showarrow=False, align='right')) # labeling the first percentage of each bar (x_axis) annotations.append(dict(xref='x', yref='y', x=xd[0] / 2, y=yd, text=str(xd[0]) + '%', font=dict(family='Arial', size=14, - color='rgb(248, 248, 255)'), + color='white'), showarrow=False)) # labeling the first Likert scale (on the top) if yd == y_data[-1]: @@ -234,7 +233,7 @@ for yd, xd in zip(y_data, x_data): x=xd[0] / 2, y=1.1, text=top_labels[0], font=dict(family='Arial', size=14, - color='rgb(67, 67, 67)'), + color='dimgray'), showarrow=False)) space = xd[0] for i in range(1, len(xd)): @@ -243,7 +242,7 @@ for yd, xd in zip(y_data, x_data): x=space + (xd[i]/2), y=yd, text=str(xd[i]) + '%', font=dict(family='Arial', size=14, - color='rgb(248, 248, 255)'), + color='ghostwhite'), showarrow=False)) # labeling the Likert scale if yd == y_data[-1]: @@ -251,7 +250,7 @@ for yd, xd in zip(y_data, x_data): x=space + (xd[i]/2), y=1.1, text=top_labels[i], font=dict(family='Arial', size=14, - color='rgb(67, 67, 67)'), + color='dimgray'), showarrow=False)) space += xd[i] @@ -357,9 +356,9 @@ fig.add_trace(go.Bar( x=y_saving, y=x, marker=dict( - color='rgba(50, 171, 96, 0.6)', + color='mediumseagreen', line=dict( - color='rgba(50, 171, 96, 1.0)', + color='seagreen', width=1), ), name='Household savings, percentage of household disposable income', @@ -369,7 +368,7 @@ fig.add_trace(go.Bar( fig.add_trace(go.Scatter( x=y_net_worth, y=x, mode='lines+markers', - line_color='rgb(128, 0, 128)', + line_color='purple', name='Household net worth, Million USD/capita', ), 1, 2) @@ -385,7 +384,7 @@ fig.update_layout( showgrid=False, showline=True, showticklabels=False, - linecolor='rgba(102, 102, 102, 0.8)', + linecolor='gray', linewidth=2, domain=[0, 0.85], ), @@ -407,8 +406,8 @@ fig.update_layout( ), legend=dict(x=0.029, y=1.038, font_size=10), margin=dict(l=100, r=20, t=70, b=70), - paper_bgcolor='rgb(248, 248, 255)', - plot_bgcolor='rgb(248, 248, 255)', + paper_bgcolor='lavenderblush', + plot_bgcolor='lavenderblush', ) annotations = [] @@ -423,14 +422,14 @@ for ydn, yd, xd in zip(y_nw, y_s, x): y=xd, x=ydn - 20000, text='{:,}'.format(ydn) + 'M', font=dict(family='Arial', size=12, - color='rgb(128, 0, 128)'), + color='purple'), showarrow=False)) # labeling the bar net worth annotations.append(dict(xref='x1', yref='y1', y=xd, x=yd + 3, text=str(yd) + '%', - font=dict(family='Arial', size=12, - color='rgb(50, 171, 96)'), + font=dict(family='Arial', size=16, + color='mediumseagreen'), showarrow=False)) # Source annotations.append(dict(xref='paper', yref='paper', @@ -439,7 +438,7 @@ annotations.append(dict(xref='paper', yref='paper', '(2015), Household savings (indicator), ' + 'Household net worth (indicator). doi: ' + '10.1787/cfc6f499-en (Accessed on 05 June 2015)', - font=dict(family='Arial', size=10, color='rgb(150,150,150)'), + font=dict(family='Arial', size=10, color='gray'), showarrow=False)) fig.update_layout(annotations=annotations)