-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmfm_you.py
646 lines (574 loc) · 24 KB
/
mfm_you.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import numpy as np
seed = 123
np.random.seed(seed)
import random
import torch
torch.manual_seed(seed)
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable, grad
from torch.optim.lr_scheduler import ReduceLROnPlateau
import csv
import os
import sys, h5py
import cPickle, time, argparse, pickle
from sklearn.svm import NuSVC
import random
from sklearn.ensemble import RandomForestClassifier
#from hmmlearn import hmm
from collections import defaultdict, OrderedDict
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import accuracy_score
from keras.utils.np_utils import to_categorical
import json
import sys
from mfm_model import MFM
from mfm_model import MFM_KL, MFM_KL_EF
def get_data(config):
map_d = dict()
trans_dir = '/media/bighdd4/Prateek/datasets/aligned_dataset/Youtube/annotations/Transcriptions/'
arr = os.listdir(trans_dir)
for file in arr:
video_id = file[:-4]
trans_loc = trans_dir + file
wav_loc = '/media/bighdd4/Prateek/datasets/aligned_dataset/Youtube/data/Audio/%s.wav' % video_id
out_loc = '/media/bighdd4/Prateek/datasets/aligned_dataset/Youtube/features/text/aligned/%s.json' % video_id
p2fa_cmd = "sudo python align.py '%s' '%s' '%s'" %(wav_loc,trans_loc,out_loc)
video_id_small = video_id[5:video_id.index('(')]
#print video_id_small,video_id
#assert False
map_d[video_id_small] = video_id
#print p2fa_cmd
#assert False
# times = []
# with open("Youtube_all.csv") as csvfile:
# reader = csv.reader(csvfile)
# for row in reader:
# try:
# times.append(float(row[3])-float(row[2]))
# except:
# pass
# print sum(times)/float(len(times))
# assert False
# labels
labels_loc = '/media/bighdd4/Prateek/datasets/aligned_dataset/Youtube/annotations/sentiment/sentimentAnnotations.csv'
labels = dict()
with open(labels_loc) as csvfile:
f = csv.reader(open(labels_loc, 'rU'), dialect=csv.excel_tab)
i = 0
segment = 0
prev_video = 'blah'
for line in f:
line = line[0].split(',')
i += 1
if i == 1:
continue
video_id_small = line[0]
start = max(float(line[1]),0.0)
end = line[2]
label = float(line[-1])
if video_id_small != prev_video:
prev_video = video_id_small
segment = 1
video_id = map_d[video_id_small]
if video_id not in labels:
labels[video_id] = dict()
labels[video_id][str(segment)] = label
p2fa_loc = '/media/bighdd4/Prateek/datasets/aligned_dataset/Youtube/features/text/aligned/%s.json' % video_id
if os.path.exists(p2fa_loc):
#print '%s,%s,%s,%s,%s' %(video_id,segment,start,end,p2fa_loc)
pass
segment_id = segment
p2fa_line = "%s,%s,%s,%s,%s"% (video_id,segment_id,start,end,p2fa_loc)
covarep_loc = '/media/bighdd4/Prateek/datasets/aligned_dataset/Youtube/features/audio/covarep/%s.mat' %video_id
facet_loc = '/media/bighdd4/Prateek/datasets/aligned_dataset/Youtube/features/video/facet/%s.csv' %video_id
words_loc = '/media/bighdd4/Prateek/datasets/aligned_dataset/Youtube/features/text/words/%s_%s.csv' %(video_id,segment_id)
embeddings_loc = '/media/bighdd4/Prateek/datasets/aligned_dataset/Youtube/features/text/embeddings/%s_%s.csv' %(video_id,segment_id)
final_line = "%s,%s,%s,%s,%s,%s,%s,%s"% (video_id,segment_id,start,end,covarep_loc,facet_loc,words_loc,embeddings_loc)
#print final_line
#assert False
if os.path.exists(covarep_loc) and os.path.exists(facet_loc) and os.path.exists(words_loc):
#print final_line
pass
segment += 1
#assert False
#get the p2fa helper to get one-hot words and word embeddings
# glove_path = '/media/bighdd2/paul/wordemb/scripts/experiments/dan/data/glove.840B.300d.txt'
# p2fa_csv = 'Youtube_p2fa.csv'
# a = P2FA_Helper_v2(p2fa_csv, output_dir="./", embed_type = "glove", embed_model_path=glove_path)
# a.load()
# assert False
all_csv_fpath = "Youtube_all.csv"
# timestamps = "absolute" # absolute or relative, relative will output features relative to segment time
# # Code for loading
# d = Dataset(all_csv_fpath)
# features = d.load()
# # View modalities
# print d.modalities # Modalities are numbered as modality_0, modality_1, ....
# # m_0 -> covarep
# # m_1 -> facet
# # m_2 -> words
# # m_3 -> embeddings
# #assert False
# features = d.align('modality_2')
# video_dict = OrderedDict()
# text_dict = OrderedDict()
# audio_dict = OrderedDict()
# for video_id in features["modality_3"]:
# for segment_id in features["modality_3"][video_id]:
# x = []
# for feat in features["modality_3"][video_id][segment_id]:
# x.append(feat[2])
# x = np.array(x)
# if video_id not in text_dict:
# text_dict[video_id] = OrderedDict()
# text_dict[video_id][segment_id] = x
# print 'text_dict loaded'
# for video_id in features["modality_1"]:
# for segment_id in features["modality_1"][video_id]:
# x = []
# for feat in features["modality_1"][video_id][segment_id]:
# x.append(feat[2])
# x = np.array(x)
# if video_id not in video_dict:
# video_dict[video_id] = OrderedDict()
# video_dict[video_id][segment_id] = x
# print 'video_dict loaded'
# for video_id in features["modality_0"]:
# for segment_id in features["modality_0"][video_id]:
# x = []
# for feat in features["modality_0"][video_id][segment_id]:
# x.append(feat[2])
# x = np.array(x)
# if video_id not in audio_dict:
# audio_dict[video_id] = OrderedDict()
# audio_dict[video_id][segment_id] = x
# print 'audio_dict loaded'
def pad(data,max_segment_len,t):
curr = []
try:
dim = data.shape[1]
except:
if t == 1:
return np.zeros((max_segment_len,300))
if t == 2:
return np.zeros((max_segment_len,74))
if t == 3:
return np.zeros((max_segment_len,36))
if max_segment_len >= len(data):
for vec in data:
curr.append(vec)
for i in xrange(max_segment_len-len(data)):
curr.append([0 for i in xrange(dim)])
else: # max_segment_len < len(text), take last max_segment_len of text
for vec in data[len(data)-max_segment_len:]:
curr.append(vec)
curr = np.array(curr)
return curr
# pickle.dump(text_dict, open("text_dict.p","wb"))
# pickle.dump(audio_dict, open("audio_dict.p","wb"))
# pickle.dump(video_dict, open("video_dict.p","wb"))
# assert False
text_dict = pickle.load(open("/media/bighdd4/Paul/mosi2/experiments/youtube/text_dict.p","rb"))
audio_dict = pickle.load(open("/media/bighdd4/Paul/mosi2/experiments/youtube/audio_dict.p","rb"))
video_dict = pickle.load(open("/media/bighdd4/Paul/mosi2/experiments/youtube/video_dict.p","rb"))
all_ids = [video_id for video_id in text_dict]
train_i = [(video_id,segment_id) for video_id in all_ids[:30] for segment_id in text_dict[video_id]]
valid_i = [(video_id,segment_id) for video_id in all_ids[30:35] for segment_id in text_dict[video_id]]
test_i = [(video_id,segment_id) for video_id in all_ids[35:] for segment_id in text_dict[video_id]]
max_segment_len = config['seqlength']
text_train_emb = np.array([pad(text_dict[video_id][segment_id],max_segment_len,1) for (video_id,segment_id) in train_i])
covarep_train = np.array([pad(audio_dict[video_id][segment_id],max_segment_len,2) for (video_id,segment_id) in train_i])
facet_train = np.array([pad(video_dict[video_id][segment_id],max_segment_len,3) for (video_id,segment_id) in train_i])
y_train = np.nan_to_num(np.array([labels[video_id][segment_id] for (video_id,segment_id) in train_i]))
text_valid_emb = np.array([pad(text_dict[video_id][segment_id],max_segment_len,1) for (video_id,segment_id) in valid_i])
covarep_valid = np.array([pad(audio_dict[video_id][segment_id],max_segment_len,2) for (video_id,segment_id) in valid_i])
facet_valid = np.array([pad(video_dict[video_id][segment_id],max_segment_len,3) for (video_id,segment_id) in valid_i])
y_valid = np.nan_to_num(np.array([labels[video_id][segment_id] for (video_id,segment_id) in valid_i]))
text_test_emb = np.array([pad(text_dict[video_id][segment_id],max_segment_len,1) for (video_id,segment_id) in test_i])
covarep_test = np.array([pad(audio_dict[video_id][segment_id],max_segment_len,2) for (video_id,segment_id) in test_i])
facet_test = np.array([pad(video_dict[video_id][segment_id],max_segment_len,3) for (video_id,segment_id) in test_i])
y_test = np.nan_to_num(np.array([labels[video_id][segment_id] for (video_id,segment_id) in test_i]))
print text_train_emb.shape # n x seq x 300
print covarep_train.shape # n x seq x 74
print facet_train.shape # n x seq x 35
X_train = np.nan_to_num(np.concatenate((text_train_emb, covarep_train, facet_train), axis=2))
print text_valid_emb.shape # n x seq x 300
print covarep_valid.shape # n x seq x 74
print facet_valid.shape # n x seq x 35
X_valid = np.nan_to_num(np.concatenate((text_valid_emb, covarep_valid, facet_valid), axis=2))
print text_test_emb.shape # n x seq x 300
print covarep_test.shape # n x seq x 74
print facet_test.shape # n x seq x 35
X_test = np.nan_to_num(np.concatenate((text_test_emb, covarep_test, facet_test), axis=2))
num_classes = 3 # -1, 0, 1
y_train += 1
y_valid += 1
y_test += 1 # now 0, 1, 2
y_train = to_categorical(y_train, num_classes)
y_valid = to_categorical(y_valid, num_classes)
y_test = to_categorical(y_test, num_classes)
return X_train, y_train, X_valid, y_valid, X_test, y_test
def train_beta_vae(X_train, y_train, X_valid, y_valid, X_test, y_test, configs):
p = np.random.permutation(X_train.shape[0])
X_train = X_train[p]
y_train = y_train[p]
X_train = X_train.swapaxes(0,1)
X_valid = X_valid.swapaxes(0,1)
X_test = X_test.swapaxes(0,1)
[config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig] = configs
[d_l,d_a,d_v] = config['input_dims']
#if config['missing']:
# model = MFM_missing(config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig)
#else:
# model = MFM(config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig)
model = MFM_KL_EF(config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig)
optimizer = optim.Adam(model.parameters(),lr=config["lr"])
#optimizer = optim.SGD(model.parameters(),lr=config["lr"],momentum=config["momentum"])
# optimizer = optim.SGD([
# {'params':model.lstm_l.parameters(), 'lr':config["lr"]},
# {'params':model.classifier.parameters(), 'lr':config["lr"]}
# ], momentum=0.9)
cr_loss = nn.CrossEntropyLoss()
l2_loss = nn.MSELoss()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
cr_loss = cr_loss.to(device)
l2_loss = l2_loss.to(device)
scheduler = ReduceLROnPlateau(optimizer, 'min')
def train(model, batchsize, X_train, y_train, optimizer, stage):
epoch_loss = 0
model.train()
total_n = X_train.shape[1]
num_batches = total_n / batchsize
for batch in xrange(num_batches+1):
start = batch*batchsize
try:
end = (batch+1)*batchsize
except:
end = total_n
optimizer.zero_grad()
batch_X = torch.Tensor(X_train[:,start:end]).cuda()
batch_y = torch.Tensor(y_train[start:end]).cuda().long()
if config['missing']:
decoded,decoded_nol,decoded_noa,decoded_nov,mmd_loss,missing_loss = model.forward(batch_X)
else:
decoded,mmd_loss,missing_loss = model.forward(batch_X)
[x_l_hat,x_a_hat,x_v_hat,y_hat] = decoded
y_hat = y_hat.squeeze(1)
mmd_loss = config['lda_mmd']*mmd_loss
x_l = batch_X[:,:,:d_l]
x_a = batch_X[:,:,d_l:d_l+d_a]
x_v = batch_X[:,:,d_l+d_a:]
gen_loss = config['lda_xl']*l2_loss(x_l_hat,x_l)+config['lda_xa']*l2_loss(x_a_hat,x_a)+config['lda_xv']*l2_loss(x_v_hat,x_v)
disc_loss = cr_loss(y_hat, batch_y)
if stage == 1:
loss = gen_loss + mmd_loss
if stage == 2:
loss = disc_loss + mmd_loss
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / num_batches
def evaluate(model, X_valid, y_valid):
epoch_loss = 0
model.eval()
with torch.no_grad():
batch_X = torch.Tensor(X_valid).cuda()
batch_y = torch.Tensor(y_valid).cuda().long()
if config['missing']:
decoded,decoded_nol,decoded_noa,decoded_nov,mmd_loss,missing_loss = model.forward(batch_X)
else:
decoded,mmd_loss,missing_loss = model.forward(batch_X)
[x_l_hat,x_a_hat,x_v_hat,y_hat] = decoded
y_hat = y_hat.squeeze(1)
epoch_loss = cr_loss(y_hat, batch_y).item()
#epoch_acc = (batch_y.eq(torch.argmax(y_hat,dim=1).long())).sum().item()
return epoch_loss
def predict(model, X_test):
epoch_loss = 0
model.eval()
with torch.no_grad():
batch_X = torch.Tensor(X_test).cuda()
if config['missing']:
decoded,decoded_nol,decoded_noa,decoded_nov,mmd_loss,missing_loss = model.forward(batch_X)
[x_l_hat_nol,x_a_hat_nol,x_v_hat_nol,y_hat_nol] = decoded_nol
[x_l_hat_noa,x_a_hat_noa,x_v_hat_noa,y_hat_noa] = decoded_noa
[x_l_hat_nov,x_a_hat_nov,x_v_hat_nov,y_hat_nov] = decoded_nov
y_hat_nol = y_hat_nol.squeeze(1).cpu().data.numpy()
y_hat_noa = y_hat_noa.squeeze(1).cpu().data.numpy()
y_hat_nov = y_hat_nov.squeeze(1).cpu().data.numpy()
x_l = batch_X[:,:,:d_l]
x_a = batch_X[:,:,d_l:d_l+d_a]
x_v = batch_X[:,:,d_l+d_a:]
x_l_loss = F.mse_loss(x_l_hat,x_l).item()
x_a_loss = F.mse_loss(x_a_hat,x_a).item()
x_v_loss = F.mse_loss(x_v_hat,x_v).item()
x_l_nol_loss = F.mse_loss(x_l_hat_nol,x_l).item()
x_a_noa_loss = F.mse_loss(x_a_hat_noa,x_a).item()
x_v_nov_loss = F.mse_loss(x_v_hat_nov,x_v).item()
print x_l_loss,x_a_loss,x_v_loss
print x_l_nol_loss,x_a_noa_loss,x_v_nov_loss
[x_l_hat,x_a_hat,x_v_hat,y_hat] = decoded
y_hat = y_hat.squeeze(1).cpu().data.numpy()
return y_hat,y_hat_nol,y_hat_noa,y_hat_nov
else:
decoded,mmd_loss,missing_loss = model.forward(batch_X)
[x_l_hat,x_a_hat,x_v_hat,y_hat] = decoded
y_hat = y_hat.squeeze(1).cpu().data.numpy()
return y_hat
best_valid = 999999.0
rand = random.randint(0,100000)
for epoch in range(config["num_epochs"]):
train_loss = train(model, config["batchsize"], X_train, y_train, optimizer, 1)
valid_loss = evaluate(model, X_valid, y_valid)
scheduler.step(valid_loss)
if True: #valid_loss <= best_valid:
# save model
best_valid = valid_loss
print epoch, train_loss, valid_loss, 'saving model'
torch.save(model, 'res_mfm_moud/mfn_%d.pt' %rand)
else:
print epoch, train_loss, valid_loss
best_valid = 999999.0
for epoch in range(config["num_epochs"]):
train_loss = train(model, config["batchsize"], X_train, y_train, optimizer, 2)
valid_loss = evaluate(model, X_valid, y_valid)
scheduler.step(valid_loss)
if True: #valid_loss <= best_valid:
# save model
best_valid = valid_loss
print epoch, train_loss, valid_loss, 'saving model'
torch.save(model, 'res_mfm_moud/mfn_%d.pt' %rand)
else:
print epoch, train_loss, valid_loss
model = torch.load('res_mfm_moud/mfn_%d.pt' %rand)
def score(predictions,y_test):
true_label = y_test
predicted_label = np.argmax(predictions, axis=1)
print "Confusion Matrix :"
print confusion_matrix(true_label, predicted_label)
print "Classification Report :"
print classification_report(true_label, predicted_label, digits=5)
print "Accuracy ", accuracy_score(true_label, predicted_label)
sys.stdout.flush()
if config['missing']:
y_hat,y_hat_nol,y_hat_noa,y_hat_nov = predict(model, X_test)
print 'scoring y_hat_nol'
score(y_hat_nol,y_test)
print 'scoring y_hat_noa'
score(y_hat_noa,y_test)
print 'scoring y_hat_nov'
score(y_hat_nov,y_test)
else:
y_hat = predict(model, X_test)
print 'scoring y_hat'
score(y_hat,y_test)
def train_mfm(X_train, y_train, X_valid, y_valid, X_test, y_test, configs):
p = np.random.permutation(X_train.shape[0])
X_train = X_train[p]
y_train = y_train[p]
X_train = X_train.swapaxes(0,1)
X_valid = X_valid.swapaxes(0,1)
X_test = X_test.swapaxes(0,1)
[config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig] = configs
[d_l,d_a,d_v] = config['input_dims']
#if config['missing']:
# model = MFM_missing(config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig)
#else:
# model = MFM(config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig)
if config['type'] == 'kl' or config['type'] == 'beta':
model = MFM_KL_EF(config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig)
else:
model = MFM(config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig)
optimizer = optim.Adam(model.parameters(),lr=config["lr"])
#optimizer = optim.SGD(model.parameters(),lr=config["lr"],momentum=config["momentum"])
# optimizer = optim.SGD([
# {'params':model.lstm_l.parameters(), 'lr':config["lr"]},
# {'params':model.classifier.parameters(), 'lr':config["lr"]}
# ], momentum=0.9)
cr_loss = nn.CrossEntropyLoss()
l2_loss = nn.MSELoss()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
cr_loss = cr_loss.to(device)
l2_loss = l2_loss.to(device)
scheduler = ReduceLROnPlateau(optimizer, 'min')
def train(model, batchsize, X_train, y_train, optimizer):
epoch_loss = 0
model.train()
total_n = X_train.shape[1]
num_batches = total_n / batchsize
for batch in xrange(num_batches+1):
start = batch*batchsize
try:
end = (batch+1)*batchsize
except:
end = total_n
optimizer.zero_grad()
batch_X = torch.Tensor(X_train[:,start:end]).cuda()
batch_y = torch.Tensor(y_train[start:end]).cuda().long()
if config['missing']:
decoded,decoded_nol,decoded_noa,decoded_nov,mmd_loss,missing_loss = model.forward(batch_X)
else:
decoded,mmd_loss,missing_loss = model.forward(batch_X)
[x_l_hat,x_a_hat,x_v_hat,y_hat] = decoded
y_hat = y_hat.squeeze(1)
mmd_loss = config['lda_mmd']*mmd_loss
x_l = batch_X[:,:,:d_l]
x_a = batch_X[:,:,d_l:d_l+d_a]
x_v = batch_X[:,:,d_l+d_a:]
gen_loss = config['lda_xl']*l2_loss(x_l_hat,x_l)+config['lda_xa']*l2_loss(x_a_hat,x_a)+config['lda_xv']*l2_loss(x_v_hat,x_v)
disc_loss = cr_loss(y_hat, batch_y)
loss = disc_loss + gen_loss + mmd_loss + missing_loss
loss.backward()
optimizer.step()
epoch_loss += disc_loss.item()
return epoch_loss / num_batches
def evaluate(model, X_valid, y_valid):
epoch_loss = 0
model.eval()
with torch.no_grad():
batch_X = torch.Tensor(X_valid).cuda()
batch_y = torch.Tensor(y_valid).cuda().long()
if config['missing']:
decoded,decoded_nol,decoded_noa,decoded_nov,mmd_loss,missing_loss = model.forward(batch_X)
else:
decoded,mmd_loss,missing_loss = model.forward(batch_X)
[x_l_hat,x_a_hat,x_v_hat,y_hat] = decoded
y_hat = y_hat.squeeze(1)
epoch_loss = cr_loss(y_hat, batch_y).item()
#epoch_acc = (batch_y.eq(torch.argmax(y_hat,dim=1).long())).sum().item()
return epoch_loss
def predict(model, X_test):
epoch_loss = 0
model.eval()
with torch.no_grad():
batch_X = torch.Tensor(X_test).cuda()
if config['missing']:
decoded,decoded_nol,decoded_noa,decoded_nov,mmd_loss,missing_loss = model.forward(batch_X)
[x_l_hat_nol,x_a_hat_nol,x_v_hat_nol,y_hat_nol] = decoded_nol
[x_l_hat_noa,x_a_hat_noa,x_v_hat_noa,y_hat_noa] = decoded_noa
[x_l_hat_nov,x_a_hat_nov,x_v_hat_nov,y_hat_nov] = decoded_nov
y_hat_nol = y_hat_nol.squeeze(1).cpu().data.numpy()
y_hat_noa = y_hat_noa.squeeze(1).cpu().data.numpy()
y_hat_nov = y_hat_nov.squeeze(1).cpu().data.numpy()
x_l = batch_X[:,:,:d_l]
x_a = batch_X[:,:,d_l:d_l+d_a]
x_v = batch_X[:,:,d_l+d_a:]
x_l_loss = F.mse_loss(x_l_hat,x_l).item()
x_a_loss = F.mse_loss(x_a_hat,x_a).item()
x_v_loss = F.mse_loss(x_v_hat,x_v).item()
x_l_nol_loss = F.mse_loss(x_l_hat_nol,x_l).item()
x_a_noa_loss = F.mse_loss(x_a_hat_noa,x_a).item()
x_v_nov_loss = F.mse_loss(x_v_hat_nov,x_v).item()
print x_l_loss,x_a_loss,x_v_loss
print x_l_nol_loss,x_a_noa_loss,x_v_nov_loss
[x_l_hat,x_a_hat,x_v_hat,y_hat] = decoded
y_hat = y_hat.squeeze(1).cpu().data.numpy()
return y_hat,y_hat_nol,y_hat_noa,y_hat_nov
else:
decoded,mmd_loss,missing_loss = model.forward(batch_X)
[x_l_hat,x_a_hat,x_v_hat,y_hat] = decoded
y_hat = y_hat.squeeze(1).cpu().data.numpy()
return y_hat
best_valid = 999999.0
rand = random.randint(0,100000)
for epoch in range(config["num_epochs"]):
train_loss = train(model, config["batchsize"], X_train, y_train, optimizer)
valid_loss = evaluate(model, X_valid, y_valid)
scheduler.step(valid_loss)
if valid_loss <= best_valid:
# save model
best_valid = valid_loss
print epoch, train_loss, valid_loss, 'saving model'
torch.save(model, 'res_mfm_you/mfn_%d.pt' %rand)
else:
print epoch, train_loss, valid_loss
model = torch.load('res_mfm_you/mfn_%d.pt' %rand)
def score(predictions,y_test):
true_label = y_test
predicted_label = np.argmax(predictions, axis=1)
print "Confusion Matrix :"
print confusion_matrix(true_label, predicted_label)
print "Classification Report :"
print classification_report(true_label, predicted_label, digits=5)
print "Accuracy ", accuracy_score(true_label, predicted_label)
sys.stdout.flush()
if config['missing']:
y_hat,y_hat_nol,y_hat_noa,y_hat_nov = predict(model, X_test)
print 'scoring y_hat_nol'
score(y_hat_nol,y_test)
print 'scoring y_hat_noa'
score(y_hat_noa,y_test)
print 'scoring y_hat_nov'
score(y_hat_nov,y_test)
else:
y_hat = predict(model, X_test)
print 'scoring y_hat'
score(y_hat,y_test)
parser = argparse.ArgumentParser(description='')
parser.add_argument('--config', default='configs/you.json', type=str)
parser.add_argument('--type', default='gd', type=str) # d, gd, m1, m3
parser.add_argument('--fusion', default='mfn', type=str) # ef, tf, mv, marn, mfn
args = parser.parse_args()
config = json.load(open(args.config), object_pairs_hook=OrderedDict)
X_train, y_train, X_valid, y_valid, X_test, y_test = get_data(config)
y_train = np.argmax(y_train,axis=1)
y_valid = np.argmax(y_valid,axis=1)
y_test = np.argmax(y_test,axis=1)
while True:
config = dict()
config["input_dims"] = [300,74,36]
hl = random.choice([32,64,88,128,156,256])
ha = random.choice([8,16,32,48,64,80])
hv = random.choice([8,16,32,48,64,80])
config["h_dims"] = [hl,ha,hv]
config['zy_size'] = random.choice([8,16,32,48,64,80])
config['zl_size'] = random.choice([32,64,88,128,156,256])
config['za_size'] = random.choice([8,16,32,48,64,80])
config['zv_size'] = random.choice([8,16,32,48,64,80])
config['fy_size'] = random.choice([8,16,32,48,64,80])
config['fl_size'] = random.choice([32,64,88,128,156,256])
config['fa_size'] = random.choice([8,16,32,48,64,80])
config['fv_size'] = random.choice([8,16,32,48,64,80])
config["memsize"] = random.choice([64,128,256,300,400])
config['zy_to_fy_dropout'] = random.choice([0.0,0.2,0.5,0.7])
config['zl_to_fl_dropout'] = random.choice([0.0,0.2,0.5,0.7])
config['za_to_fa_dropout'] = random.choice([0.0,0.2,0.5,0.7])
config['zv_to_fv_dropout'] = random.choice([0.0,0.2,0.5,0.7])
config['fy_to_y_dropout'] = random.choice([0.0,0.2,0.5,0.7])
config['lda_mmd'] = random.choice([10,50,100,200]) #random.choice([0.001,0.005,0.01,0.1,0.5,1.0])
config['lda_xl'] = random.choice([0.01,0.1,0.5,1.0,5.0])
config['lda_xa'] = random.choice([0.01,0.1,0.5,1.0,5.0])
config['lda_xv'] = random.choice([0.01,0.1,0.5,1.0,5.0])
config['type'] = 'kl'
config['missing'] = 0
config['output_dim'] = 3
config["windowsize"] = 2
config["batchsize"] = random.choice([32,64,128])
config["num_epochs"] = 50
config["lr"] = random.choice([0.001,0.002,0.004,0.005,0.008,0.01,0.02])
config["momentum"] = 0.5 #random.choice([0.1,0.3,0.5,0.6,0.8,0.9])
NN1Config = dict()
NN1Config["shapes"] = random.choice([32,64,128])
NN1Config["drop"] = random.choice([0.0,0.2,0.5,0.7])
NN2Config = dict()
NN2Config["shapes"] = random.choice([32,64,128])
NN2Config["drop"] = random.choice([0.0,0.2,0.5,0.7])
gamma1Config = dict()
gamma1Config["shapes"] = random.choice([32,64,128])
gamma1Config["drop"] = random.choice([0.0,0.2,0.5,0.7])
gamma2Config = dict()
gamma2Config["shapes"] = random.choice([32,64,128])
gamma2Config["drop"] = random.choice([0.0,0.2,0.5,0.7])
outConfig = dict()
outConfig["shapes"] = random.choice([32,64,128])
outConfig["drop"] = random.choice([0.0,0.2,0.5,0.7])
configs = [config,NN1Config,NN2Config,gamma1Config,gamma2Config,outConfig]
print configs
train_beta_vae(X_train, y_train, X_valid, y_valid, X_test, y_test, configs)
#train_mfm(X_train, y_train, X_valid, y_valid, X_test, y_test, configs)