|
| 1 | +# flake8: noqa |
| 2 | +# yapf: disable |
| 3 | +import csv |
| 4 | +import os |
| 5 | +import os.path as osp |
| 6 | +import re |
| 7 | +from collections import defaultdict |
| 8 | +from datetime import datetime |
| 9 | +from itertools import product |
| 10 | + |
| 11 | +import numpy as np |
| 12 | +from mmengine import ConfigDict |
| 13 | +from tabulate import tabulate |
| 14 | + |
| 15 | +from opencompass.partitioners.sub_naive import remove_duplicate_pairs |
| 16 | +from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg |
| 17 | + |
| 18 | +from .compass_arena import (check_position_bias, |
| 19 | + model_abbr_from_cfg_used_in_summarizer) |
| 20 | +from .utils import get_judgeanswer_and_reference, get_outdir |
| 21 | + |
| 22 | + |
| 23 | +def post_process_wildbench_pair(judgement: str): |
| 24 | + pattern = r'\"choice\": \"(.*?)\"' |
| 25 | + matched_result = re.findall(pattern, judgement) |
| 26 | + if matched_result: |
| 27 | + return matched_result[0] |
| 28 | + else: |
| 29 | + return None |
| 30 | + |
| 31 | + |
| 32 | +class CompassBenchSummarizer: |
| 33 | + """Do the subjectivity analyze based on evaluation results. |
| 34 | +
|
| 35 | + Args: |
| 36 | + config (ConfigDict): The configuration object of the evaluation task. |
| 37 | + It's expected to be filled out at runtime. |
| 38 | + """ |
| 39 | + |
| 40 | + def __init__(self, config: ConfigDict, check_pos_bias=False) -> None: |
| 41 | + self.tasks = [] |
| 42 | + self.cfg = config |
| 43 | + self.base_models = self.cfg['datasets'][0]['base_models'] |
| 44 | + self.compare_models = self.cfg['eval']['partitioner']['models'] |
| 45 | + self.judge_models = self.cfg.get('judge_models', None) |
| 46 | + self.meta_judge_model = self.cfg.eval.partitioner.get('meta_judge_model', None) |
| 47 | + self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0]) |
| 48 | + self.judge_function = post_process_wildbench_pair |
| 49 | + self.check_pos_bias = check_pos_bias |
| 50 | + |
| 51 | + def get_score(self, time_str): |
| 52 | + output_dir, results_folder = get_outdir(self.cfg, time_str) |
| 53 | + model_combinations = list(product(self.base_models, self.compare_models)) |
| 54 | + unique_combinations = remove_duplicate_pairs([combo for combo in model_combinations if combo[0] != combo[1]]) |
| 55 | + |
| 56 | + if self.meta_judge_model is not None: |
| 57 | + self.judge_models.append(self.meta_judge_model) |
| 58 | + |
| 59 | + scores = {} |
| 60 | + for idx, judge_model_cfg in enumerate(self.judge_models): |
| 61 | + judge_model = model_abbr_from_cfg(judge_model_cfg) |
| 62 | + for dataset in self.cfg['datasets']: |
| 63 | + dataset_abbr = dataset_abbr_from_cfg(dataset) |
| 64 | + for model_pair in unique_combinations: |
| 65 | + base_model = model_pair[0]['abbr'] |
| 66 | + compare_model = model_pair[1]['abbr'] |
| 67 | + if idx == len(self.judge_models): |
| 68 | + subdir = base_model + '_' + compare_model + '_summarized-by--' + judge_model |
| 69 | + else: |
| 70 | + subdir = base_model + '_' + compare_model + '_judged-by--' + judge_model |
| 71 | + subdir_path = os.path.join(results_folder, subdir) |
| 72 | + if not os.path.isdir(subdir_path): |
| 73 | + print(subdir_path + ' is not exist! please check!') |
| 74 | + continue |
| 75 | + judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function) |
| 76 | + if self.check_pos_bias: |
| 77 | + bias_num = check_position_bias(judged_answers, references) |
| 78 | + else: |
| 79 | + bias_num = 0 |
| 80 | + win_base_model = defaultdict(float) |
| 81 | + win_compare_model = defaultdict(float) |
| 82 | + categories = defaultdict(float) |
| 83 | + score_mapping = {'A++': 1, 'A+': 0.5, 'A=B': 0, 'B+': -0.5, 'B++': -1} |
| 84 | + for prediction, reference in zip(judged_answers, references): |
| 85 | + if prediction not in score_mapping: |
| 86 | + continue |
| 87 | + |
| 88 | + categories[dataset_abbr] += 1 |
| 89 | + flag = 1 if reference['answer1'] == base_model else -1 |
| 90 | + score_1 = score_mapping[prediction]*flag |
| 91 | + score_2 = -score_1 |
| 92 | + win_compare_model[dataset_abbr] += score_2 |
| 93 | + win_base_model[dataset_abbr] += score_1 |
| 94 | + |
| 95 | + for capability in categories: |
| 96 | + win_base_model[capability] = win_base_model[capability] / categories[capability] * 100 |
| 97 | + win_base_model[capability] = round(win_base_model[capability], 2) |
| 98 | + win_compare_model[capability] = win_compare_model[capability] / categories[capability] * 100 |
| 99 | + win_compare_model[capability] = round(win_compare_model[capability], 2) |
| 100 | + |
| 101 | + win_base_model['position_bias'] = bias_num |
| 102 | + win_compare_model['position_bias'] = bias_num |
| 103 | + |
| 104 | + if judge_model not in scores: |
| 105 | + scores[judge_model] = {} |
| 106 | + if dataset_abbr not in scores[judge_model]: |
| 107 | + scores[judge_model][dataset_abbr] = {} |
| 108 | + scores[judge_model][dataset_abbr][base_model + '/' + compare_model] = win_compare_model |
| 109 | + |
| 110 | + return scores |
| 111 | + |
| 112 | + def summarize( |
| 113 | + self, |
| 114 | + time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'), |
| 115 | + ): |
| 116 | + """Summarize the subjectivity analysis based on evaluation results. |
| 117 | +
|
| 118 | + Args: |
| 119 | + time_str (str): Timestamp for file naming. |
| 120 | +
|
| 121 | + Returns: |
| 122 | + pd.DataFrame: The summary results. |
| 123 | + """ |
| 124 | + scores = self.get_score(time_str) |
| 125 | + output_dir, results_folder = get_outdir(self.cfg, time_str) |
| 126 | + for idx, judge_model in enumerate(self.judge_models): |
| 127 | + judge_abbr = model_abbr_from_cfg(judge_model) |
| 128 | + table = [] |
| 129 | + for dataset in self.cfg['datasets']: |
| 130 | + dataset_abbr = dataset_abbr_from_cfg(dataset) |
| 131 | + summarizer_model_abbrs = [model_abbr_from_cfg_used_in_summarizer(i) for i in self.compare_models] |
| 132 | + one_column = list(scores[judge_abbr][dataset_abbr].values())[0] |
| 133 | + row_headers = [i for i in one_column.keys() if i not in [dataset_abbr, 'position_bias']] |
| 134 | + # row_headers = [dataset_abbr, 'position_bias'] + row_headers |
| 135 | + row_headers = [dataset_abbr] + row_headers |
| 136 | + for row_header in row_headers: |
| 137 | + row = [row_header] |
| 138 | + headers = [''] |
| 139 | + for model_cfg in self.compare_models: |
| 140 | + model_abbr = model_abbr_from_cfg(model_cfg) |
| 141 | + avg = 0 |
| 142 | + for base_model_cfg in self.base_models: |
| 143 | + base_model_abbr = model_abbr_from_cfg(base_model_cfg) |
| 144 | + base_compare = base_model_abbr + '/' + model_abbr |
| 145 | + headers.append(base_compare) |
| 146 | + s = scores[judge_abbr][dataset_abbr][base_compare].get(row_header, '') |
| 147 | + if isinstance(s, float): |
| 148 | + avg += s |
| 149 | + s = f'{s:.2f}' |
| 150 | + if isinstance(s, int): |
| 151 | + s = str(s) |
| 152 | + row.append(s) |
| 153 | + # avg = avg/len(self.base_models) |
| 154 | + # row.append(f'{avg:.2f}') |
| 155 | + # headers.append('Avg') |
| 156 | + table.append(row) |
| 157 | + txt = tabulate(table, headers=headers) |
| 158 | + print(txt) |
| 159 | + |
| 160 | + if idx == len(self.judge_models): |
| 161 | + output_filename = osp.join(output_dir, 'summarized-by--' + judge_abbr + '-' + '-report.csv') |
| 162 | + else: |
| 163 | + output_filename = osp.join(output_dir, 'judged-by--' + judge_abbr + '-' + '-report.csv') |
| 164 | + os.makedirs(osp.dirname(output_filename), exist_ok=True) |
| 165 | + with open(output_filename, 'w') as f: |
| 166 | + f.write(','.join(headers) + '\n') |
| 167 | + for line in table: |
| 168 | + f.write(','.join(line) + '\n') |
| 169 | + print(output_filename) |
0 commit comments