OpenCompass provides an evaluation tutorial for DeepSeek R1 series reasoning models (mathematical datasets).
- At the model level, we recommend using the sampling approach to reduce repetitions caused by greedy decoding
- For datasets with limited samples, we employ multiple evaluation runs and take the average
- For answer validation, we utilize LLM-based verification to reduce misjudgments from rule-based evaluation
Please follow OpenCompass's installation guide.
We provide example configurations in examples/eval_deepseek_r1.py
. Below is the configuration explanation:
# Configuration supporting multiple runs (example)
from opencompass.configs.datasets.aime2024.aime2024_llmverify_repeat8_gen_e8fcee import aime2024_datasets
datasets = sum(
(v for k, v in locals().items() if k.endswith('_datasets')),
[],
)
# LLM validator configuration. Users need to deploy API services via LMDeploy/vLLM/SGLang or use OpenAI-compatible endpoints
verifier_cfg = dict(
abbr='qwen2-5-32B-Instruct',
type=OpenAISDK,
path='Qwen/Qwen2.5-32B-Instruct', # Replace with actual path
key='YOUR_API_KEY', # Use real API key
openai_api_base=['http://your-api-endpoint'], # Replace with API endpoint
query_per_second=16,
batch_size=1024,
temperature=0.001,
max_out_len=16384
)
# Apply validator to all datasets
for item in datasets:
if 'judge_cfg' in item['eval_cfg']['evaluator']:
item['eval_cfg']['evaluator']['judge_cfg'] = verifier_cfg
We provided an example of evaluation based on LMDeploy as the reasoning model backend, users can modify path (i.e., HF path)
# LMDeploy model configuration example
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='deepseek-r1-distill-qwen-7b-turbomind',
path='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B',
engine_config=dict(session_len=32768, max_batch_size=128, tp=1),
gen_config=dict(
do_sample=True,
temperature=0.6,
top_p=0.95,
max_new_tokens=32768
),
max_seq_len=32768,
batch_size=64,
run_cfg=dict(num_gpus=1),
pred_postprocessor=dict(type=extract_non_reasoning_content)
),
# Extendable 14B/32B configurations...
]
# Inference configuration
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=1),
runner=dict(type=LocalRunner, task=dict(type=OpenICLInferTask))
# Evaluation configuration
eval = dict(
partitioner=dict(type=NaivePartitioner, n=8),
runner=dict(type=LocalRunner, task=dict(type=OpenICLEvalTask)))
# Multiple runs results average configuration
summary_groups = [
{
'name': 'AIME2024-Aveage8',
'subsets':[[f'aime2024-run{idx}', 'accuracy'] for idx in range(8)]
},
# Other dataset average configurations...
]
summarizer = dict(
dataset_abbrs=[
['AIME2024-Aveage8', 'naive_average'],
# Other dataset metrics...
],
summary_groups=summary_groups
)
# Work directory configuration
work_dir = "outputs/deepseek_r1_reasoning"
opencompass examples/eval_deepseek_r1.py --debug --dump-eval-details
Evaluation logs will be output in the command line.
You need to modify the infer
configuration in the configuration file and set num_worker
to 8
# Inference configuration
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=1),
runner=dict(type=LocalRunner, task=dict(type=OpenICLInferTask))
At the same time, remove the --debug
parameter from the evaluation command
opencompass examples/eval_deepseek_r1.py --dump-eval-details
In this mode, OpenCompass will use multithreading to start $num_worker
tasks. Specific logs will not be displayed in the command line, instead, detailed evaluation logs will be shown under $work_dir
.
Note that in the model configuration, num_gpus
in run_cfg
needs to be set to 2 (if using an inference backend, parameters such as tp
in LMDeploy also need to be modified accordingly to 2), and at the same time, set num_worker
in the infer
configuration to 4
models += [
dict(
type=TurboMindModelwithChatTemplate,
abbr='deepseek-r1-distill-qwen-14b-turbomind',
path='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B',
engine_config=dict(session_len=32768, max_batch_size=128, tp=2),
gen_config=dict(
do_sample=True,
temperature=0.6,
top_p=0.95,
max_new_tokens=32768),
max_seq_len=32768,
max_out_len=32768,
batch_size=128,
run_cfg=dict(num_gpus=2),
pred_postprocessor=dict(type=extract_non_reasoning_content)
),
]
# Inference configuration
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=4),
runner=dict(type=LocalRunner, task=dict(type=OpenICLInferTask))
The evaluation results are displayed as follows:
dataset version metric mode deepseek-r1-distill-qwen-7b-turbomind ---------------------------------- --------- ------------- ------ --------------------------------------- MATH - - - AIME2024-Aveage8 - naive_average gen 56.25
Since the model uses Sampling for decoding, and the AIME dataset size is small, there may still be a performance fluctuation of 1-3 points even when averaging over 8 evaluations.
Model | Dataset | Metric | Value |
---|---|---|---|
DeepSeek-R1-Distill-Qwen-7B | AIME2024 | Accuracy | 56.3 |
DeepSeek-R1-Distill-Qwen-14B | AIME2024 | Accuracy | 74.2 |
DeepSeek-R1-Distill-Qwen-32B | AIME2024 | Accuracy | 74.2 |