Skip to content

Commit 7e85da4

Browse files
committed
Add details in README
1 parent ba9e34b commit 7e85da4

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

README.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,12 @@
11
# tailestim
22

3-
A Python package for estimating tail parameters of heavy-tailed distributions, which is useful for analyzing power-law behavior in complex networks.
3+
A Python package for estimating tail parameters of heavy-tailed distributions, which is useful for analyzing power-law behavior in complex networks. Currently in development (alpha version).
44

55
[![PyPI version](https://img.shields.io/pypi/v/tailestim)](https://pypi.org/project/tailestim/) [![PyPI status](https://img.shields.io/pypi/status/tailestim)](https://pypi.org/project/tailestim/) [![Test CI status](https://github.com/mu373/tailestim/actions/workflows/test.yml/badge.svg)](https://github.com/mu373/tailestim/actions/workflows/test.yml) [![GitHub license](https://img.shields.io/github/license/mu373/tailestim)](https://github.com/mu373/tailestim/blob/main/LICENSE.txt)
66

77

88
> [!NOTE]
9-
> The original estimation implementations are from [ivanvoitalov/tail-estimation](https://github.com/ivanvoitalov/tail-estimation), which is based on the paper [(Voitalov et al. 2019)](https://doi.org/10.1103/PhysRevResearch.1.033034). `tailestim` is a wrapper package that provides a more convenient/modern interface and logging, that can be installed using `pip` and `conda`.
9+
The original estimation implementations are from [ivanvoitalov/tail-estimation](https://github.com/ivanvoitalov/tail-estimation), which is based on the paper ["Scale-free networks well done" (Voitalov et al. 2019)](https://doi.org/10.1103/PhysRevResearch.1.033034). `tailestim` is a wrapper package that provides a more convenient/modern interface and logging, that can be installed using `pip` and `conda`.
1010

1111
## Features
1212
- Multiple estimation methods including Hill, Moments, Kernel, Pickands, and Smooth Hill estimators
@@ -111,7 +111,7 @@ Second bootstrap minimum AMSE fraction: 0.2745
111111
The package includes several example datasets:
112112
- `CAIDA_KONECT`
113113
- `Libimseti_in_KONECT`
114-
- `Pareto`
114+
- `Pareto` (Follows power-law with $\gamma=2.5$)
115115

116116
Load any example dataset using:
117117
```python

0 commit comments

Comments
 (0)