Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Results are not good #23

Closed
MotiBaadror opened this issue Sep 8, 2020 · 9 comments
Closed

Results are not good #23

MotiBaadror opened this issue Sep 8, 2020 · 9 comments

Comments

@MotiBaadror
Copy link

I am using custom dataset.
More details
Batch_size =1
Segmentation Mask from CHIP_PGN results.
Pose from openpose Coco Model and changed the code that described here
Cloth and cloth mask are from the preprocessed data

2940
2978
3700

@minar09
Copy link
Owner

minar09 commented Sep 9, 2020

Hi @MotiBaadror , looks like there's an artifact with cloth shape in neck area. Can you please share your cp_dataset.py? Also, I think CIHP_PGN segmentation does not have labels for hand-band or wrist-watch, so it will be absent in the final results.

@MotiBaadror
Copy link
Author

MotiBaadror commented Sep 9, 2020

Hi @minar09 , Thank you for your response. here is my cp_dataset.py. If I will not get the watch in the result. It would be fine. I just want to solve try-on problem. Also, I am curious that, why the third image output is blurred near the waist for output?

# coding=utf-8
import torch
import torch.utils.data as data
import torchvision.transforms as transforms

from PIL import Image
from PIL import ImageDraw

import os.path as osp
import numpy as np
import json


class CPDataset(data.Dataset):
    """Dataset for CP-VTON+.
    """

    def __init__(self, opt):
        super(CPDataset, self).__init__()
        # base setting
        self.opt = opt
        self.root = opt.dataroot
        self.datamode = opt.datamode  # train or test or self-defined
        self.stage = opt.stage  # GMM or TOM
        self.data_list = opt.data_list
        self.fine_height = opt.fine_height
        self.fine_width = opt.fine_width
        self.radius = opt.radius
        self.data_path = osp.join(opt.dataroot, opt.datamode)
        self.transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

        # load data list
        im_names = []
        c_names = []
        with open(osp.join(opt.dataroot, opt.data_list), 'r') as f:
            for line in f.readlines():
                im_name, c_name = line.strip().split()
                im_names.append(im_name)
                c_names.append(c_name)

        self.im_names = im_names
        self.c_names = c_names

    def name(self):
        return "CPDataset"

    def __getitem__(self, index):
        c_name = self.c_names[index]
        im_name = self.im_names[index]
        if self.stage == 'GMM':
            c = Image.open(osp.join(self.data_path, 'cloth', c_name))
            cm = Image.open(osp.join(self.data_path, 'cloth-mask', c_name)).convert('L')
        else:
            c = Image.open(osp.join(self.data_path, 'warp-cloth', im_name))    # c_name, if that is used when saved
            cm = Image.open(osp.join(self.data_path, 'warp-mask', im_name)).convert('L')    # c_name, if that is used when saved

        c = self.transform(c)  # [-1,1]
        cm_array = np.array(cm)
        cm_array = (cm_array >= 128).astype(np.float32)
        cm = torch.from_numpy(cm_array)  # [0,1]
        cm.unsqueeze_(0)

        # person image
        im = Image.open(osp.join(self.data_path, 'image', im_name))
        im = self.transform(im)  # [-1,1]

        """
        LIP labels
        
        [(0, 0, 0),    # 0=Background
         (128, 0, 0),  # 1=Hat
         (255, 0, 0),  # 2=Hair
         (0, 85, 0),   # 3=Glove
         (170, 0, 51),  # 4=SunGlasses
         (255, 85, 0),  # 5=UpperClothes
         (0, 0, 85),     # 6=Dress
         (0, 119, 221),  # 7=Coat
         (85, 85, 0),    # 8=Socks
         (0, 85, 85),    # 9=Pants
         (85, 51, 0),    # 10=Jumpsuits
         (52, 86, 128),  # 11=Scarf
         (0, 128, 0),    # 12=Skirt
         (0, 0, 255),    # 13=Face
         (51, 170, 221),  # 14=LeftArm
         (0, 255, 255),   # 15=RightArm
         (85, 255, 170),  # 16=LeftLeg
         (170, 255, 85),  # 17=RightLeg
         (255, 255, 0),   # 18=LeftShoe
         (255, 170, 0)    # 19=RightShoe
         (170, 170, 50)   # 20=Skin/Neck/Chest (Newly added after running dataset_neck_skin_correction.py)
         ]
         """

        # load parsing image
        parse_name = im_name.replace('.jpg', '.png')
        im_parse = Image.open(osp.join(self.data_path, 'image-parse-new', parse_name)).convert('L') # read segmentation
        parse_array = np.array(im_parse) # convert to numpy array
        parse_shape = (parse_array > 0).astype(np.float32) # get binary body shape

        # im_parse = Image.open(
        #     # osp.join(self.data_path, 'image-parse', parse_name)).convert('L')
        #     osp.join(self.data_path, 'image-parse-new', parse_name)).convert('L')   # updated new segmentation
        # parse_array = np.array(im_parse)
        # im_mask = Image.open(
        #     osp.join(self.data_path, 'image-mask', parse_name)).convert('L')
        # mask_array = np.array(im_mask)

        # # parse_shape = (parse_array > 0).astype(np.float32)  # CP-VTON body shape
        # # Get shape from body mask (CP-VTON+)
        # parse_shape = (mask_array > 0).astype(np.float32)

        if self.stage == 'GMM':
            parse_head = (parse_array == 1).astype(np.float32) + \
                (parse_array == 4).astype(np.float32) + \
                (parse_array == 13).astype(
                    np.float32)  # CP-VTON+ GMM input (reserved regions)
        else:
            parse_head = (parse_array == 1).astype(np.float32) + \
                (parse_array == 2).astype(np.float32) + \
                (parse_array == 4).astype(np.float32) + \
                (parse_array == 9).astype(np.float32) + \
                (parse_array == 12).astype(np.float32) + \
                (parse_array == 13).astype(np.float32) + \
                (parse_array == 16).astype(np.float32) + \
                (parse_array == 17).astype(
                np.float32)  # CP-VTON+ TOM input (reserved regions)

        parse_cloth = (parse_array == 5).astype(np.float32) + \
            (parse_array == 6).astype(np.float32) + \
            (parse_array == 7).astype(np.float32)    # upper-clothes labels

        # shape downsample
        parse_shape_ori = Image.fromarray((parse_shape*255).astype(np.uint8))
        parse_shape = parse_shape_ori.resize(
            (self.fine_width//16, self.fine_height//16), Image.BILINEAR)
        parse_shape = parse_shape.resize(
            (self.fine_width, self.fine_height), Image.BILINEAR)
        parse_shape_ori = parse_shape_ori.resize(
            (self.fine_width, self.fine_height), Image.BILINEAR)
        shape_ori = self.transform(parse_shape_ori)  # [-1,1]
        shape = self.transform(parse_shape)  # [-1,1]
        phead = torch.from_numpy(parse_head)  # [0,1]
        # phand = torch.from_numpy(parse_hand)  # [0,1]
        pcm = torch.from_numpy(parse_cloth)  # [0,1]

        # upper cloth
        im_c = im * pcm + (1 - pcm)  # [-1,1], fill 1 for other parts
        im_h = im * phead - (1 - phead)  # [-1,1], fill 0 for other parts

        # load pose points
        pose_name = im_name.replace('.jpg', '_keypoints.json')
        with open(osp.join(self.data_path, 'pose', pose_name), 'r') as f:
            pose_label = json.load(f)
            pose_data = pose_label['people'][0]['pose_keypoints_2d']
            pose_data = np.array(pose_data)
            pose_data = pose_data.reshape((-1, 3))

        point_num = pose_data.shape[0]
        pose_map = torch.zeros(point_num, self.fine_height, self.fine_width)
        r = self.radius
        im_pose = Image.new('L', (self.fine_width, self.fine_height))
        pose_draw = ImageDraw.Draw(im_pose)
        for i in range(point_num):
            one_map = Image.new('L', (self.fine_width, self.fine_height))
            draw = ImageDraw.Draw(one_map)
            pointx = pose_data[i, 0]
            pointy = pose_data[i, 1]
            if pointx > 1 and pointy > 1:
                draw.rectangle((pointx-r, pointy-r, pointx +
                                r, pointy+r), 'white', 'white')
                pose_draw.rectangle(
                    (pointx-r, pointy-r, pointx+r, pointy+r), 'white', 'white')
            one_map = self.transform(one_map)
            pose_map[i] = one_map[0]

        # just for visualization
        im_pose = self.transform(im_pose)

        # cloth-agnostic representation
        agnostic = torch.cat([shape, im_h, pose_map], 0)

        if self.stage == 'GMM':
            im_g = Image.open('grid.png')
            im_g = self.transform(im_g)
        else:
            im_g = ''

        pcm.unsqueeze_(0)  # CP-VTON+

        result = {
            'c_name':   c_name,     # for visualization
            'im_name':  im_name,    # for visualization or ground truth
            'cloth':    c,          # for input
            'cloth_mask':     cm,   # for input
            'image':    im,         # for visualization
            'agnostic': agnostic,   # for input
            'parse_cloth': im_c,    # for ground truth
            'shape': shape,         # for visualization
            'head': im_h,           # for visualization
            'pose_image': im_pose,  # for visualization
            'grid_image': im_g,     # for visualization
            'parse_cloth_mask': pcm,     # for CP-VTON+, TOM input
            'shape_ori': shape_ori,     # original body shape without resize
        }

        return result

    def __len__(self):
        return len(self.im_names)


class CPDataLoader(object):
    def __init__(self, opt, dataset):
        super(CPDataLoader, self).__init__()

        if opt.shuffle:
            train_sampler = torch.utils.data.sampler.RandomSampler(dataset)
        else:
            train_sampler = None

        self.data_loader = torch.utils.data.DataLoader(
            dataset, batch_size=opt.batch_size, shuffle=(
                train_sampler is None),
            num_workers=opt.workers, pin_memory=True, sampler=train_sampler)
        self.dataset = dataset
        self.data_iter = self.data_loader.__iter__()

    def next_batch(self):
        try:
            batch = self.data_iter.__next__()
        except StopIteration:
            self.data_iter = self.data_loader.__iter__()
            batch = self.data_iter.__next__()

        return batch


if __name__ == "__main__":
    print("Check the dataset for geometric matching module!")

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataroot", default="data")
    parser.add_argument("--datamode", default="train")
    parser.add_argument("--stage", default="GMM")
    parser.add_argument("--data_list", default="train_pairs.txt")
    parser.add_argument("--fine_width", type=int, default=192)
    parser.add_argument("--fine_height", type=int, default=256)
    parser.add_argument("--radius", type=int, default=3)
    parser.add_argument("--shuffle", action='store_true',
                        help='shuffle input data')
    parser.add_argument('-b', '--batch-size', type=int, default=4)
    parser.add_argument('-j', '--workers', type=int, default=1)

    opt = parser.parse_args()
    dataset = CPDataset(opt)
    data_loader = CPDataLoader(opt, dataset)

    print('Size of the dataset: %05d, dataloader: %04d'
          % (len(dataset), len(data_loader.data_loader)))
    first_item = dataset.__getitem__(0)
    first_batch = data_loader.next_batch()

    from IPython import embed
    embed()

@minar09
Copy link
Owner

minar09 commented Sep 9, 2020

@MotiBaadror , looks like code is okay. Maybe the network is somehow still getting the source cloth shape in GMM so the first warped cloth is keeping shape from the source image. Also, your target cloth lengths are a bit smaller than the cloth in source person images, so the try-on results have some blur areas in the pants.

@MotiBaadror
Copy link
Author

MotiBaadror commented Sep 9, 2020

@minar09, I can share more results if that help me find the area (pose, segmentation, cloth, cloth mask) of improvement. Also how can I make sure that the target cloth and input image be of same length?
here

@minar09
Copy link
Owner

minar09 commented Sep 9, 2020

Maybe you need to crop the person image with a bit longer pants area. Also, I am afraid the CP-VTON+ does not have much improvements to offer at this point. If you want more better quality, then I think you can try with the ACGPN (CVPR 2020). Their virtual try-on quality is state-of-the-art on Viton dataset so far.

@thaithanhtuan
Copy link
Collaborator

@MotiBaadror, did you re train the network with new data format? In some case, the different between training data format and testing data format cause the error.

@MotiBaadror
Copy link
Author

MotiBaadror commented Sep 9, 2020

@thaithanhtuan, I did not retrain the network. I am using pre-trained network. Is it necessary to retrain while using the model for custom data. Although I am using data that is from ecommerce dataset. One more thing that I am using this article to calculate pose_keypoints.

@amandazw
Copy link

Maybe you need to crop the person image with a bit longer pants area. Also, I am afraid the CP-VTON+ does not have much improvements to offer at this point. If you want more better quality, then I think you can try with the ACGPN (CVPR 2020). Their virtual try-on quality is state-of-the-art on Viton dataset so far.

Hi~I'm appreciate for your efforts in virtual try-on, and what do you think about PF-AFN (CVPR 2021)(https://github.com/geyuying/PF-AFN), would it be better than ACGPN?

@minar09
Copy link
Owner

minar09 commented Jun 13, 2021

Hi @amandazw , actually I haven't tried any new VTON works after 2020. I hope someone else can share their experience with the newer works. Thank you.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants