-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathdataset_survival.py
executable file
·486 lines (393 loc) · 19.2 KB
/
dataset_survival.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
from __future__ import print_function, division
import os
import torch
import numpy as np
import pandas as pd
import math
import re
import pdb
import pickle
from scipy import stats
from torch.utils.data import Dataset
import h5py
from utils.utils import generate_split, nth
from sklearn.preprocessing import StandardScaler
def save_splits(split_datasets, column_keys, filename, boolean_style=False):
splits = [split_datasets[i].slide_data['slide_id'] for i in range(len(split_datasets))]
if not boolean_style:
df = pd.concat(splits, ignore_index=True, axis=1)
df.columns = column_keys
else:
df = pd.concat(splits, ignore_index = True, axis=0)
index = df.values.tolist()
one_hot = np.eye(len(split_datasets)).astype(bool)
bool_array = np.repeat(one_hot, [len(dset) for dset in split_datasets], axis=0)
df = pd.DataFrame(bool_array, index=index, columns = ['train', 'val', 'test'])
df.to_csv(filename)
print()
class Generic_WSI_Survival_Dataset(Dataset):
def __init__(self,
csv_path = 'dataset_csv/ccrcc_clean.csv',
mode = 'omic',
shuffle = False,
seed = 7,
print_info = True,
n_bins = 5,
ignore=[],
patient_strat=False,
label_col = None,
filter_dict = {},
eps=1e-6,
):
"""
Args:
csv_file (string): Path to the csv file with annotations.
shuffle (boolean): Whether to shuffle
seed (int): random seed for shuffling the data
print_info (boolean): Whether to print a summary of the dataset
label_dict (dict): Dictionary with key, value pairs for converting str labels to int
ignore (list): List containing class labels to ignore
"""
self.custom_test_ids = None
self.seed = seed
self.print_info = print_info
self.patient_strat = patient_strat
self.train_ids, self.val_ids, self.test_ids = (None, None, None)
self.data_dir = None
slide_data = pd.read_csv(csv_path, index_col=0, low_memory=False)
if 'case_id' not in slide_data:
slide_data.index = slide_data.index.str[:12]
slide_data['case_id'] = slide_data.index
slide_data = slide_data.reset_index(drop=True)
if "IDC" in slide_data['oncotree_code']: # must be BRCA (and if so, use only IDCs)
slide_data = slide_data[slide_data['oncotree_code'] == 'IDC']
if not label_col:
label_col = 'survival'
else:
assert label_col in slide_data.columns
self.label_col = label_col
###shuffle data
if shuffle:
np.random.seed(seed)
np.random.shuffle(slide_data)
#self.slide_data = slide_data
patients_df = slide_data.drop_duplicates(['case_id']).copy()
uncensored_df = patients_df[patients_df['censorship'] < 1]
#disc_labels, bins = pd.cut(uncensored_df[label_col], bins=n_bins, right=False, include_lowest=True, labels=np.arange(n_bins), retbins=True)
disc_labels, q_bins = pd.qcut(uncensored_df[label_col], q=n_bins, retbins=True, labels=False)
q_bins[-1] = slide_data[label_col].max() + eps
q_bins[0] = slide_data[label_col].min() - eps
disc_labels, q_bins = pd.cut(patients_df[label_col], bins=q_bins, retbins=True, labels=False, right=False, include_lowest=True)
patients_df.insert(2, 'label', disc_labels.values.astype(int))
patient_dict = {}
slide_data = slide_data.set_index('case_id')
for patient in patients_df['case_id']:
slide_ids = slide_data.loc[patient, 'slide_id']
if isinstance(slide_ids, str):
slide_ids = np.array(slide_ids).reshape(-1)
else:
slide_ids = slide_ids.values
patient_dict.update({patient:slide_ids})
self.patient_dict = patient_dict
slide_data = patients_df
slide_data.reset_index(drop=True, inplace=True)
slide_data = slide_data.assign(slide_id=slide_data['case_id'])
label_dict = {}
key_count = 0
for i in range(len(q_bins)-1):
for c in [0, 1]:
print('{} : {}'.format((i, c), key_count))
label_dict.update({(i, c):key_count})
key_count+=1
self.label_dict = label_dict
for i in slide_data.index:
key = slide_data.loc[i, 'label']
slide_data.at[i, 'disc_label'] = key
censorship = slide_data.loc[i, 'censorship']
key = (key, int(censorship))
slide_data.at[i, 'label'] = label_dict[key]
self.bins = q_bins
self.num_classes=len(self.label_dict)
patients_df = slide_data.drop_duplicates(['case_id'])
self.patient_data = {'case_id':patients_df['case_id'].values, 'label':patients_df['label'].values}
new_cols = list(slide_data.columns[-2:]) + list(slide_data.columns[:-2])
slide_data = slide_data[new_cols]
self.slide_data = slide_data
self.metadata = slide_data.columns[:11]
self.mode = mode
self.cls_ids_prep()
if print_info:
self.summarize()
@staticmethod
def init_multi_site_label_dict(slide_data, label_dict):
print('initiating multi-source label dictionary')
sites = np.unique(slide_data['site'].values)
multi_site_dict = {}
num_classes = len(label_dict)
for key, val in label_dict.items():
for idx, site in enumerate(sites):
site_key = (key, site)
site_val = val+idx*num_classes
multi_site_dict.update({site_key:site_val})
print('{} : {}'.format(site_key, site_val))
return multi_site_dict
def cls_ids_prep(self):
self.patient_cls_ids = [[] for i in range(self.num_classes)]
for i in range(self.num_classes):
self.patient_cls_ids[i] = np.where(self.patient_data['label'] == i)[0]
self.slide_cls_ids = [[] for i in range(self.num_classes)]
for i in range(self.num_classes):
self.slide_cls_ids[i] = np.where(self.slide_data['label'] == i)[0]
def patient_data_prep(self):
patients = np.unique(np.array(self.slide_data['case_id'])) # get unique patients
patient_labels = []
for p in patients:
locations = self.slide_data[self.slide_data['case_id'] == p].index.tolist()
assert len(locations) > 0
label = self.slide_data['label'][locations[0]] # get patient label
patient_labels.append(label)
self.patient_data = {'case_id':patients, 'label':np.array(patient_labels)}
@staticmethod
def df_prep(data, n_bins, ignore, label_col):
mask = data[label_col].isin(ignore)
data = data[~mask]
data.reset_index(drop=True, inplace=True)
disc_labels, bins = pd.cut(data[label_col], bins=n_bins)
return data, bins
def __len__(self):
if self.patient_strat:
return len(self.patient_data['case_id'])
else:
return len(self.slide_data)
def summarize(self):
print("label column: {}".format(self.label_col))
print("label dictionary: {}".format(self.label_dict))
print("number of classes: {}".format(self.num_classes))
print("slide-level counts: ", '\n', self.slide_data['label'].value_counts(sort = False))
for i in range(self.num_classes):
print('Patient-LVL; Number of samples registered in class %d: %d' % (i, self.patient_cls_ids[i].shape[0]))
print('Slide-LVL; Number of samples registered in class %d: %d' % (i, self.slide_cls_ids[i].shape[0]))
def create_splits(self, k = 3, val_num = (25, 25), test_num = (40, 40), label_frac = 1.0, custom_test_ids = None):
settings = {
'n_splits' : k,
'val_num' : val_num,
'test_num': test_num,
'label_frac': label_frac,
'seed': self.seed,
'custom_test_ids': self.custom_test_ids
}
if self.patient_strat:
settings.update({'cls_ids' : self.patient_cls_ids, 'samples': len(self.patient_data['case_id'])})
else:
settings.update({'cls_ids' : self.slide_cls_ids, 'samples': len(self.slide_data)})
self.split_gen = generate_split(**settings)
def set_splits(self,start_from=None):
if start_from:
ids = nth(self.split_gen, start_from)
else:
ids = next(self.split_gen)
if self.patient_strat:
slide_ids = [[] for i in range(len(ids))]
for split in range(len(ids)):
for idx in ids[split]:
case_id = self.patient_data['case_id'][idx]
slide_indices = self.slide_data[self.slide_data['case_id'] == case_id].index.tolist()
slide_ids[split].extend(slide_indices)
self.train_ids, self.val_ids, self.test_ids = slide_ids[0], slide_ids[1], slide_ids[2]
else:
self.train_ids, self.val_ids, self.test_ids = ids
def get_split_from_df(self, all_splits: dict, split_key: str='train', scaler=None):
split = all_splits[split_key]
split = split.dropna().reset_index(drop=True)
#pdb.set_trace()
if len(split) > 0:
mask = self.slide_data['slide_id'].isin(split.tolist())
df_slice = self.slide_data[mask].reset_index(drop=True)
split = Generic_Split(df_slice, metadata=self.metadata, mode=self.mode, data_dir=self.data_dir, label_col=self.label_col, patient_dict=self.patient_dict, num_classes=self.num_classes)
else:
split = None
return split
def get_merged_split_from_df(self, all_splits, split_keys=['train']):
merged_split = []
for split_key in split_keys:
split = all_splits[split_key]
split = split.dropna().reset_index(drop=True).tolist()
merged_split.extend(split)
if len(split) > 0:
mask = self.slide_data['slide_id'].isin(merged_split)
df_slice = self.slide_data[mask].dropna().reset_index(drop=True)
split = Generic_Split(df_slice, metadata=self.metadata, data_dir=self.data_dir, label_col=self.label_col, patient_dict=self.patient_dict, num_classes=self.num_classes)
else:
split = None
return split
def return_splits(self, from_id: bool=True, csv_path: str=None):
if from_id:
if len(self.train_ids) > 0:
train_data = self.slide_data.loc[self.train_ids].reset_index(drop=True)
train_split = Generic_Split(train_data, metadata=self.metadata, data_dir=self.data_dir, label_col=self.label_col, patient_dict=self.patient_dict, num_classes=self.num_classes)
else:
train_split = None
if len(self.val_ids) > 0:
val_data = self.slide_data.loc[self.val_ids].reset_index(drop=True)
val_split = Generic_Split(val_data, metadata=self.metadata, data_dir=self.data_dir, label_col=self.label_col, patient_dict=self.patient_dict, num_classes=self.num_classes)
else:
val_split = None
if len(self.test_ids) > 0:
test_data = self.slide_data.loc[self.test_ids].reset_index(drop=True)
test_split = Generic_Split(test_data, metadata=self.metadata, data_dir=self.data_dir, label_col=self.label_col, patient_dict=self.patient_dict, num_classes=self.num_classes)
else:
test_split = None
else:
assert csv_path
all_splits = pd.read_csv(csv_path)
train_split = self.get_split_from_df(all_splits=all_splits, split_key='train')
val_split = self.get_split_from_df(all_splits=all_splits, split_key='val')
test_split = None #self.get_split_from_df(all_splits=all_splits, split_key='test')
### --> Normalizing Data
print("****** Normalizing Data ******")
scalers = train_split.get_scaler()
train_split.apply_scaler(scalers=scalers)
val_split.apply_scaler(scalers=scalers)
#test_split.apply_scaler(scalers=scalers)
### <--
return train_split, val_split#, test_split
def get_list(self, ids):
return self.slide_data['slide_id'][ids]
def getlabel(self, ids):
return self.slide_data['label'][ids]
def __getitem__(self, idx):
return None
def key_pair2desc(self, key_pair):
label, censorship = key_pair
label_desc = (self.bins[label], self.bins[label] + 1, censorship)
return label_desc
def test_split_gen(self, return_descriptor=False):
if return_descriptor:
index = [list(self.label_dict.keys())[list(self.label_dict.values()).index(i)] for i in range(self.num_classes)]
index = [self.key_pair2desc(key_pair) for key_pair in index]
columns = ['train', 'val', 'test']
df = pd.DataFrame(np.full((len(index), len(columns)), 0, dtype=np.int32), index= index,
columns= columns)
count = len(self.train_ids)
print('\nnumber of training samples: {}'.format(count))
labels = self.getlabel(self.train_ids)
unique, counts = np.unique(labels, return_counts=True)
missing_classes = np.setdiff1d(np.arange(self.num_classes), unique)
unique = np.append(unique, missing_classes)
counts = np.append(counts, np.full(len(missing_classes), 0))
inds = unique.argsort()
counts = counts[inds]
for u in range(len(unique)):
print('number of samples in cls {}: {}'.format(unique[u], counts[u]))
if return_descriptor:
df.loc[index[u], 'train'] = counts[u]
count = len(self.val_ids)
print('\nnumber of val samples: {}'.format(count))
labels = self.getlabel(self.val_ids)
unique, counts = np.unique(labels, return_counts=True)
missing_classes = np.setdiff1d(np.arange(self.num_classes), unique)
unique = np.append(unique, missing_classes)
counts = np.append(counts, np.full(len(missing_classes), 0))
inds = unique.argsort()
counts = counts[inds]
for u in range(len(unique)):
print('number of samples in cls {}: {}'.format(unique[u], counts[u]))
if return_descriptor:
df.loc[index[u], 'val'] = counts[u]
count = len(self.test_ids)
print('\nnumber of test samples: {}'.format(count))
labels = self.getlabel(self.test_ids)
unique, counts = np.unique(labels, return_counts=True)
missing_classes = np.setdiff1d(np.arange(self.num_classes), unique)
unique = np.append(unique, missing_classes)
counts = np.append(counts, np.full(len(missing_classes), 0))
inds = unique.argsort()
counts = counts[inds]
for u in range(len(unique)):
print('number of samples in cls {}: {}'.format(unique[u], counts[u]))
if return_descriptor:
df.loc[index[u], 'test'] = counts[u]
assert len(np.intersect1d(self.train_ids, self.test_ids)) == 0
assert len(np.intersect1d(self.train_ids, self.val_ids)) == 0
assert len(np.intersect1d(self.val_ids, self.test_ids)) == 0
if return_descriptor:
return df
def save_split(self, filename):
train_split = self.get_list(self.train_ids)
val_split = self.get_list(self.val_ids)
test_split = self.get_list(self.test_ids)
df_tr = pd.DataFrame({'train': train_split})
df_v = pd.DataFrame({'val': val_split})
df_t = pd.DataFrame({'test': test_split})
df = pd.concat([df_tr, df_v, df_t], axis=1)
df.to_csv(filename, index = False)
class Generic_MIL_Survival_Dataset(Generic_WSI_Survival_Dataset):
def __init__(self,
data_dir,
mode: str='omic',
**kwargs):
super(Generic_MIL_Survival_Dataset, self).__init__(**kwargs)
self.data_dir = data_dir
self.mode = mode
self.use_h5 = False
def load_from_h5(self, toggle):
self.use_h5 = toggle
def __getitem__(self, idx):
case_id = self.slide_data['case_id'][idx]
label = self.slide_data['disc_label'][idx]
event_time = self.slide_data[self.label_col][idx]
c = self.slide_data['censorship'][idx]
slide_ids = self.patient_dict[case_id]
if type(self.data_dir) == dict:
source = self.slide_data['oncotree_code'][idx]
data_dir = self.data_dir[source]
else:
data_dir = self.data_dir
if not self.use_h5:
if self.data_dir:
if self.mode == 'path':
path_features = []
for slide_id in slide_ids:
wsi_path = os.path.join(data_dir, 'pt_files', '{}.pt'.format(slide_id.rstrip('.svs')))
wsi_bag = torch.load(wsi_path)
path_features.append(wsi_bag)
path_features = torch.cat(path_features, dim=0)
return (path_features, torch.zeros((1,1)), label, event_time, c)
elif self.mode == 'omic':
genomic_features = torch.tensor(self.genomic_features[idx])
return (torch.zeros((1,1)), genomic_features, label, event_time, c)
elif self.mode == 'pathomic':
path_features = []
for slide_id in slide_ids:
wsi_path = os.path.join(data_dir, 'pt_files', '{}.pt'.format(slide_id.rstrip('.svs')))
wsi_bag = torch.load(wsi_path)
path_features.append(wsi_bag)
path_features = torch.cat(path_features, dim=0)
genomic_features = torch.tensor(self.genomic_features[idx])
return (path_features, genomic_features, label, event_time, c)
else:
raise NotImplementedError('Mode [%s] not implemented.' % self.mode)
### <--
else:
return slide_ids, label, event_time, c
class Generic_Split(Generic_MIL_Survival_Dataset):
def __init__(self, slide_data, metadata, mode, data_dir=None, label_col=None, patient_dict=None, num_classes=2):
self.use_h5 = False
self.slide_data = slide_data
self.metadata = metadata
self.mode = mode
self.data_dir = data_dir
self.num_classes = num_classes
self.label_col = label_col
self.patient_dict = patient_dict
self.slide_cls_ids = [[] for i in range(self.num_classes)]
for i in range(self.num_classes):
self.slide_cls_ids[i] = np.where(self.slide_data['label'] == i)[0]
self.genomic_features = self.slide_data.drop(self.metadata, axis=1)
def __len__(self):
return len(self.slide_data)
def get_scaler(self):
scaler_omic = StandardScaler().fit(self.genomic_features)
return scaler_omic
def apply_scaler(self, scalers: tuple=None):
self.genomic_features = scalers.transform(self.genomic_features)