Skip to content

Commit 18fa6da

Browse files
committedAug 26, 2016
first
0 parents  commit 18fa6da

File tree

1 file changed

+124
-0
lines changed

1 file changed

+124
-0
lines changed
 

‎rnn.py

+124
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,124 @@
1+
import copy, numpy as np
2+
np.random.seed(0)
3+
4+
# compute sigmoid nonlinearity
5+
def sigmoid(x):
6+
output = 1/(1+np.exp(-x))
7+
return output
8+
9+
# convert output of sigmoid function to its derivative
10+
def sigmoid_output_to_derivative(output):
11+
return output*(1-output)
12+
13+
# training dataset generation
14+
int2binary = {}
15+
binary_dim = 8
16+
17+
largest_number = pow(2,binary_dim)
18+
binary = np.unpackbits(
19+
np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
20+
for i in range(largest_number):
21+
int2binary[i] = binary[i]
22+
23+
# input variables
24+
alpha = 0.1
25+
input_dim = 2
26+
hidden_dim = 16
27+
output_dim = 1
28+
29+
30+
# initialize neural network weights
31+
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
32+
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
33+
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1
34+
35+
synapse_0_update = np.zeros_like(synapse_0)
36+
synapse_1_update = np.zeros_like(synapse_1)
37+
synapse_h_update = np.zeros_like(synapse_h)
38+
39+
# training logic
40+
for j in range(10000):
41+
42+
# generate a simple addition problem (a + b = c)
43+
a_int = np.random.randint(largest_number/2) # int version
44+
a = int2binary[a_int] # binary encoding
45+
46+
b_int = np.random.randint(largest_number/2) # int version
47+
b = int2binary[b_int] # binary encoding
48+
49+
# true answer
50+
c_int = a_int + b_int
51+
c = int2binary[c_int]
52+
53+
# where we'll store our best guess (binary encoded)
54+
d = np.zeros_like(c)
55+
56+
overallError = 0
57+
58+
layer_2_deltas = list()
59+
layer_1_values = list()
60+
layer_1_values.append(np.zeros(hidden_dim))
61+
62+
# moving along the positions in the binary encoding
63+
for position in range(binary_dim):
64+
65+
# generate input and output
66+
X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
67+
y = np.array([[c[binary_dim - position - 1]]]).T
68+
69+
# hidden layer (input ~+ prev_hidden)
70+
layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))
71+
72+
# output layer (new binary representation)
73+
layer_2 = sigmoid(np.dot(layer_1,synapse_1))
74+
75+
# did we miss?... if so, by how much?
76+
layer_2_error = y - layer_2
77+
layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
78+
overallError += np.abs(layer_2_error[0])
79+
80+
# decode estimate so we can print it out
81+
d[binary_dim - position - 1] = np.round(layer_2[0][0])
82+
83+
# store hidden layer so we can use it in the next timestep
84+
layer_1_values.append(copy.deepcopy(layer_1))
85+
86+
future_layer_1_delta = np.zeros(hidden_dim)
87+
88+
for position in range(binary_dim):
89+
90+
X = np.array([[a[position],b[position]]])
91+
layer_1 = layer_1_values[-position-1]
92+
prev_layer_1 = layer_1_values[-position-2]
93+
94+
# error at output layer
95+
layer_2_delta = layer_2_deltas[-position-1]
96+
# error at hidden layer
97+
layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
98+
99+
# let's update all our weights so we can try again
100+
synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
101+
synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
102+
synapse_0_update += X.T.dot(layer_1_delta)
103+
104+
future_layer_1_delta = layer_1_delta
105+
106+
107+
synapse_0 += synapse_0_update * alpha
108+
synapse_1 += synapse_1_update * alpha
109+
synapse_h += synapse_h_update * alpha
110+
111+
synapse_0_update *= 0
112+
synapse_1_update *= 0
113+
synapse_h_update *= 0
114+
115+
# print out progress
116+
if(j % 1000 == 0):
117+
print "Error:" + str(overallError)
118+
print "Pred:" + str(d)
119+
print "True:" + str(c)
120+
out = 0
121+
for index,x in enumerate(reversed(d)):
122+
out += x*pow(2,index)
123+
print str(a_int) + " + " + str(b_int) + " = " + str(out)
124+
print "------------"

0 commit comments

Comments
 (0)
Please sign in to comment.