-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_rouge_qwen.py
executable file
·151 lines (129 loc) · 5.55 KB
/
eval_rouge_qwen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
from tqdm import tqdm
import os
from torch.nn import CrossEntropyLoss
from kv_cache_qwen import ElasticCache, LocalCache, H2OCache
import json
device = "cuda"
import argparse
import torch
from cache_generate_qwen import generate, sample, greedy_search
import types
from qwen_generation_utils import make_context
from rouge import Rouge
from PIL import Image
import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def main(args):
with open(args.data_path, "r") as f:
data = json.load(f)
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.model_path, device_map="cuda", trust_remote_code=True, bf16=True).eval()
parent_class = model.__class__.__bases__[0]
model.generate = types.MethodType(generate, model)
model.sample = types.MethodType(sample, model)
model.greedy_search = types.MethodType(greedy_search, model)
k_seq_dim = v_seq_dim = 1
os.makedirs('logs_detail/', exist_ok=True)
data = data[:args.eval_samples]
score_all = []
for item in tqdm(data):
if args.method == "elastic":
kv_cache = ElasticCache(
start_size=args.start_size,
recent_size=args.recent_size,
k_seq_dim=k_seq_dim,
v_seq_dim=v_seq_dim,
ratio=args.ratio,
layer_num=32
)
elif args.method == "local":
kv_cache = LocalCache(
start_size=args.start_size,
recent_size=args.recent_size,
k_seq_dim=k_seq_dim,
v_seq_dim=v_seq_dim,
ratio=args.ratio
)
elif args.method == "h2o":
kv_cache = H2OCache(
start_size=args.start_size,
recent_size=args.recent_size,
k_seq_dim=k_seq_dim,
v_seq_dim=v_seq_dim,
ratio=args.ratio
)
image_path = os.path.join(args.image_path, item["image"])
question = item['question']
answer = item['answer']
question = question.replace('<image>', '')
query = tokenizer.from_list_format([
{'image': image_path},
{'text': question}
])
raw_text, context_tokens = make_context(
tokenizer,
query,
history=None,
system="You are a helpful assistant.",
max_window_size=None,
chat_format='chatml',
)
input_ids = torch.tensor([context_tokens]).cuda()
answer_ids = tokenizer.encode(answer, return_tensors='pt').cuda()[:, 1:]
past_key_values = None
num_of_token = 0
output_ids = model.generate(
input_ids,
do_sample=True if (args.temperature > 0 and args.ratio == 0) else False,
temperature=args.temperature if args.ratio == 0 else 0,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=1024,
use_cache=True,
kv_cache_criteria=kv_cache,
attention_mask=None)
outputs_generate = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
rouge = Rouge()
scores = rouge.get_scores(outputs_generate, answer)
score_all.append(scores[0]['rouge-l']['f'])
rouge = sum(score_all) / len(score_all)
with open(f"logs_rouge_qwen/{args.exp_name}.txt", "a") as f:
f.write(f"{rouge}\n")
f.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="./models/qwen_vl_chat/")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--data-path", type=str, default="./playground/data/mm-vet/rouge-qwen-detail.json")
parser.add_argument("--image-path", type=str, default="./playground/data")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
parser.add_argument("--start-size", type=int, default=1)
parser.add_argument("--recent-size", type=int, default=2047)
parser.add_argument("--eval-samples", type=int, default=218)
parser.add_argument("--exp-name", type=str, default='')
parser.add_argument("--method", type=str, default="elastic")
parser.add_argument("--ratio", type=float, default=0.0)
args = parser.parse_args()
main(args)