-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconvert_rouge_llava.py
executable file
·131 lines (111 loc) · 5.3 KB
/
convert_rouge_llava.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
from tqdm import tqdm
import os
import json
device = "cuda"
import argparse
import torch
import types
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def main(args):
with open(args.data_path, "r") as f:
data = json.load(f)
outputs_data_json = []
dataset_name = args.data_path.split('/')[-1].split('.')[0]
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
if 'llama-2' in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode
data = data[:args.eval_samples]
for item in tqdm(data):
conv = conv_templates[args.conv_mode].copy()
if "mpt" in model_name.lower():
roles = ('user', 'assistant')
else:
roles = conv.roles
image_path = os.path.join(args.image_path, item["image"])
question = item['question']
if "mm-vet" in args.data_path:
question = question + '\n' + DEFAULT_IMAGE_TOKEN
answer = item['answer']
output_data_json = {}
output_data_json['image'] = item["image"]
output_data_json['question'] = question
image = load_image(image_path)
image_tensor = process_images([image], image_processor, args)
image_tensor = image_tensor.to(model.device, dtype=torch.bfloat16)
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
answer_ids = tokenizer.encode(answer, return_tensors='pt').cuda()[:, 1:]
past_key_values = None
num_of_token = 0
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria])
outputs_generate = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
output_data_json['answer'] = outputs_generate
outputs_data_json.append(output_data_json)
with open('./playground/data/' + dataset_name + '/rouge-' + model_name + '-' + dataset_name+'.json', 'w') as f:
json.dump(outputs_data_json, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="./models/llava-v1.5-7b")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--data-path", type=str, default="./playground/data/detail_1k.json")
parser.add_argument("--image-path", type=str, default="./playground/data")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
parser.add_argument("--start-size", type=int, default=1)
parser.add_argument("--recent-size", type=int, default=2047)
parser.add_argument("--eval-samples", type=int, default=218)
parser.add_argument("--exp-name", type=str, default='')
args = parser.parse_args()
main(args)