forked from haonan-li/CMMLU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqwen1.5-vllm.py
147 lines (116 loc) · 4.82 KB
/
qwen1.5-vllm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import torch
import numpy as np
import argparse
from mp_utils import choices, format_example, gen_prompt, softmax, run_eval, extract_choice
from tqdm import tqdm
import requests
import json
from time import sleep
from transformers import AutoTokenizer, AutoModel
import re
url = "http://10.xxx.2.145:9009/v1/chat/completions"
# tokenizer = AutoTokenizer.from_pretrained("/workspace/models/Qwen1.5-7B-Chat", trust_remote_code=True)
def get_response(inputs):
timeout_counter = 0
completion = None
while completion is None and timeout_counter<=30:
try:
messages = [
{"role": "user", "content": inputs}
]
payload = {
"model": "qwen1.5",
"messages": messages,
"max_tokens": 256,
"top_p": 0.95,
"seed": 100,
"temperature": 0.8,
"stream": False
}
headers = {"content-type": "application/json"}
response = requests.request("POST", url, json=payload, headers=headers)
# print(response.text)
response_json = json.loads(response.text)
response_str = response_json['choices'][0]['message']['content']
return response_str
except Exception as msg:
if "timeout=600" in str(msg):
timeout_counter+=1
print(msg)
sleep(5)
continue
print("Some error occured when getting gpt output.")
def eval(tokenizer,
subject, dev_df, test_df,
num_few_shot, max_length, cot, **kwargs):
cors = []
all_preds = []
answers = choices[: test_df.shape[1] - 2]
for i in tqdm(range(test_df.shape[0])):
# 封装请求提示,不包含答案
prompt_end = format_example(test_df, i, subject, include_answer=False, cot=cot)
prompt = gen_prompt(dev_df,
subject,
prompt_end,
num_few_shot,
tokenizer,
max_length,
cot=cot)
label = test_df.iloc[i, test_df.shape[1] - 1]
print('\n---------\n', i, prompt)
pred = get_response(prompt)
print("正确答案:", label)
print("实际答案:", pred)
# ext_answer = extract_ans(pred)
extract_answer = extract_choice(pred)
print("抽取的实际答案:", extract_answer)
# if pred and pred[0] in choices:
# cors.append(pred[0] == label)
cors.append(extract_answer == label)
all_preds.append(pred.replace("\n", "") if pred is not None else "")
acc = np.mean(cors)
print("Average accuracy {:.3f} - {}".format(acc, subject))
print("{} results, {} inappropriate formated answers.".format(len(cors), len(all_preds)-len(cors)))
return acc, all_preds, None
def extract_ans(response_str):
pattern=[
r"答案是\s?选?项?\s?([A-D])",
r"答案为\s?选?项?\s?([A-D])",
r"答案应为\s?选?项?\s?([A-D])",
r"答案选\s?选?项?\s?([A-D])",
r"答案是:\s?选?项?\s?([A-D])",
r"答案应该是:\s?选?项?\s?([A-D])",
r"正确的一项是\s?([A-D])",
r"答案为:\s?选?项?\s?([A-D])",
r"答案应为:\s?选?项?\s?([A-D])",
r"答案:\s?选?项?\s?([A-D])",
r"答案是:\s?选?项?\s?([A-D])",
r"答案应该是:\s?选?项?\s?([A-D])",
r"答案为:\s?选?项?\s?([A-D])",
r"答案应为:\s?选?项?\s?([A-D])",
r"答案:\s?选?项?\s?([A-D])",
r"选([A-D])",
r"选项([A-D])",
]
ans_list=[]
# if response_str[0] in ["A",'B','C','D']:
if response_str and response_str[0] in choices:
ans_list.append(response_str[0])
for p in pattern:
if len(ans_list)==0:
ans_list=re.findall(p,response_str)
else:
break
return ans_list
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", type=str, default="")
parser.add_argument("--data_dir", "-d", type=str, default="../data")
parser.add_argument("--save_dir", "-s", type=str, default="../results/GPT4")
parser.add_argument("--num_few_shot", "-n", type=int, default=0)
parser.add_argument("--max_length", type=int, default=4096)
parser.add_argument("--cot", action='store_true')
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained("/workspace/models/Qwen1.5-7B-Chat", trust_remote_code=True)
run_eval(None, tokenizer, eval, args)