-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathnoise1234.c
529 lines (432 loc) · 19.2 KB
/
noise1234.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
// noise1234
//
// Author: Stefan Gustavson, 2003-2005
// Contact: [email protected]
//
// This code was GPL licensed until February 2011.
// As the original author of this code, I hereby
// release it into the public domain.
// Please feel free to use it for whatever you want.
// Credit is appreciated where appropriate, and I also
// appreciate being told where this code finds any use,
// but you may do as you like.
/** \file
\brief Implements the noise1 to noise4 functions for Perlin noise.
\author Stefan Gustavson ([email protected])
*/
/*
* This implementation is "Improved Noise" as presented by
* Ken Perlin at Siggraph 2002. The 3D function is a direct port
* of his Java reference code available on www.noisemachine.com
* (although I cleaned it up, made it faster and made the code
* more readable), but the 1D, 2D and 4D cases were implemented
* from scratch by me.
*
* This is a backport to C of my improved noise class in C++.
* It is highly reusable without source code modifications.
*
*/
#include "noise1234.h"
// This is the new and improved, C(2) continuous interpolant
#define FADE(t) ( t * t * t * ( t * ( t * 6 - 15 ) + 10 ) )
#define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : ((int)x-1 ) )
#define LERP(t, a, b) ((a) + (t)*((b)-(a)))
//---------------------------------------------------------------------
// Static data
/*
* Permutation table. This is just a random jumble of all numbers 0-255,
* repeated twice to avoid wrapping the index at 255 for each lookup.
* This needs to be exactly the same for all instances on all platforms,
* so it's easiest to just keep it as static explicit data.
* This also removes the need for any initialisation of this class.
*
* Note that making this an int[] instead of a char[] might make the
* code run faster on platforms with a high penalty for unaligned single
* byte addressing. Intel x86 is generally single-byte-friendly, but
* some other CPUs are faster with 4-aligned reads.
* However, a char[] is smaller, which avoids cache trashing, and that
* is probably the most important aspect on most architectures.
* This array is accessed a *lot* by the noise functions.
* A vector-valued noise over 3D accesses it 96 times, and a
* float-valued 4D noise 64 times. We want this to fit in the cache!
*/
unsigned char perm[] = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
//---------------------------------------------------------------------
/*
* Helper functions to compute gradients-dot-residualvectors (1D to 4D)
* Note that these generate gradients of more than unit length. To make
* a close match with the value range of classic Perlin noise, the final
* noise values need to be rescaled. To match the RenderMan noise in a
* statistical sense, the approximate scaling values (empirically
* determined from test renderings) are:
* 1D noise needs rescaling with 0.188
* 2D noise needs rescaling with 0.507
* 3D noise needs rescaling with 0.936
* 4D noise needs rescaling with 0.87
* Note that these noise functions are the most practical and useful
* signed version of Perlin noise. To return values according to the
* RenderMan specification from the SL noise() and pnoise() functions,
* the noise values need to be scaled and offset to [0,1], like this:
* float SLnoise = (noise3(x,y,z) + 1.0) * 0.5;
*/
float grad1( int hash, float x ) {
int h = hash & 15;
float grad = 1.0 + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if (h&8) grad = -grad; // and a random sign for the gradient
return ( grad * x ); // Multiply the gradient with the distance
}
float grad2( int hash, float x, float y ) {
int h = hash & 7; // Convert low 3 bits of hash code
float u = h<4 ? x : y; // into 8 simple gradient directions,
float v = h<4 ? y : x; // and compute the dot product with (x,y).
return ((h&1)? -u : u) + ((h&2)? -2.0*v : 2.0*v);
}
float grad3( int hash, float x, float y , float z ) {
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
float u = h<8 ? x : y; // gradient directions, and compute dot product.
float v = h<4 ? y : h==12||h==14 ? x : z; // Fix repeats at h = 12 to 15
return ((h&1)? -u : u) + ((h&2)? -v : v);
}
float grad4( int hash, float x, float y, float z, float t ) {
int h = hash & 31; // Convert low 5 bits of hash code into 32 simple
float u = h<24 ? x : y; // gradient directions, and compute dot product.
float v = h<16 ? y : z;
float w = h<8 ? z : t;
return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w);
}
//---------------------------------------------------------------------
/** 1D float Perlin noise, SL "noise()"
*/
float noise1( float x )
{
int ix0, ix1;
float fx0, fx1;
float s, n0, n1;
ix0 = FASTFLOOR( x ); // Integer part of x
fx0 = x - ix0; // Fractional part of x
fx1 = fx0 - 1.0f;
ix1 = ( ix0+1 ) & 0xff;
ix0 = ix0 & 0xff; // Wrap to 0..255
s = FADE( fx0 );
n0 = grad1( perm[ ix0 ], fx0 );
n1 = grad1( perm[ ix1 ], fx1 );
return 0.188f * ( LERP( s, n0, n1 ) );
}
//---------------------------------------------------------------------
/** 1D float Perlin periodic noise, SL "pnoise()"
*/
float pnoise1( float x, int px )
{
int ix0, ix1;
float fx0, fx1;
float s, n0, n1;
ix0 = FASTFLOOR( x ); // Integer part of x
fx0 = x - ix0; // Fractional part of x
fx1 = fx0 - 1.0f;
ix1 = (( ix0 + 1 ) % px) & 0xff; // Wrap to 0..px-1 *and* wrap to 0..255
ix0 = ( ix0 % px ) & 0xff; // (because px might be greater than 256)
s = FADE( fx0 );
n0 = grad1( perm[ ix0 ], fx0 );
n1 = grad1( perm[ ix1 ], fx1 );
return 0.188f * ( LERP( s, n0, n1 ) );
}
//---------------------------------------------------------------------
/** 2D float Perlin noise.
*/
float noise2( float x, float y )
{
int ix0, iy0, ix1, iy1;
float fx0, fy0, fx1, fy1;
float s, t, nx0, nx1, n0, n1;
ix0 = FASTFLOOR( x ); // Integer part of x
iy0 = FASTFLOOR( y ); // Integer part of y
fx0 = x - ix0; // Fractional part of x
fy0 = y - iy0; // Fractional part of y
fx1 = fx0 - 1.0f;
fy1 = fy0 - 1.0f;
ix1 = (ix0 + 1) & 0xff; // Wrap to 0..255
iy1 = (iy0 + 1) & 0xff;
ix0 = ix0 & 0xff;
iy0 = iy0 & 0xff;
t = FADE( fy0 );
s = FADE( fx0 );
nx0 = grad2(perm[ix0 + perm[iy0]], fx0, fy0);
nx1 = grad2(perm[ix0 + perm[iy1]], fx0, fy1);
n0 = LERP( t, nx0, nx1 );
nx0 = grad2(perm[ix1 + perm[iy0]], fx1, fy0);
nx1 = grad2(perm[ix1 + perm[iy1]], fx1, fy1);
n1 = LERP(t, nx0, nx1);
return 0.507f * ( LERP( s, n0, n1 ) );
}
//---------------------------------------------------------------------
/** 2D float Perlin periodic noise.
*/
float pnoise2( float x, float y, int px, int py )
{
int ix0, iy0, ix1, iy1;
float fx0, fy0, fx1, fy1;
float s, t, nx0, nx1, n0, n1;
ix0 = FASTFLOOR( x ); // Integer part of x
iy0 = FASTFLOOR( y ); // Integer part of y
fx0 = x - ix0; // Fractional part of x
fy0 = y - iy0; // Fractional part of y
fx1 = fx0 - 1.0f;
fy1 = fy0 - 1.0f;
ix1 = (( ix0 + 1 ) % px) & 0xff; // Wrap to 0..px-1 and wrap to 0..255
iy1 = (( iy0 + 1 ) % py) & 0xff; // Wrap to 0..py-1 and wrap to 0..255
ix0 = ( ix0 % px ) & 0xff;
iy0 = ( iy0 % py ) & 0xff;
t = FADE( fy0 );
s = FADE( fx0 );
nx0 = grad2(perm[ix0 + perm[iy0]], fx0, fy0);
nx1 = grad2(perm[ix0 + perm[iy1]], fx0, fy1);
n0 = LERP( t, nx0, nx1 );
nx0 = grad2(perm[ix1 + perm[iy0]], fx1, fy0);
nx1 = grad2(perm[ix1 + perm[iy1]], fx1, fy1);
n1 = LERP(t, nx0, nx1);
return 0.507f * ( LERP( s, n0, n1 ) );
}
//---------------------------------------------------------------------
/** 3D float Perlin noise.
*/
float noise3( float x, float y, float z )
{
int ix0, iy0, ix1, iy1, iz0, iz1;
float fx0, fy0, fz0, fx1, fy1, fz1;
float s, t, r;
float nxy0, nxy1, nx0, nx1, n0, n1;
ix0 = FASTFLOOR( x ); // Integer part of x
iy0 = FASTFLOOR( y ); // Integer part of y
iz0 = FASTFLOOR( z ); // Integer part of z
fx0 = x - ix0; // Fractional part of x
fy0 = y - iy0; // Fractional part of y
fz0 = z - iz0; // Fractional part of z
fx1 = fx0 - 1.0f;
fy1 = fy0 - 1.0f;
fz1 = fz0 - 1.0f;
ix1 = ( ix0 + 1 ) & 0xff; // Wrap to 0..255
iy1 = ( iy0 + 1 ) & 0xff;
iz1 = ( iz0 + 1 ) & 0xff;
ix0 = ix0 & 0xff;
iy0 = iy0 & 0xff;
iz0 = iz0 & 0xff;
r = FADE( fz0 );
t = FADE( fy0 );
s = FADE( fx0 );
nxy0 = grad3(perm[ix0 + perm[iy0 + perm[iz0]]], fx0, fy0, fz0);
nxy1 = grad3(perm[ix0 + perm[iy0 + perm[iz1]]], fx0, fy0, fz1);
nx0 = LERP( r, nxy0, nxy1 );
nxy0 = grad3(perm[ix0 + perm[iy1 + perm[iz0]]], fx0, fy1, fz0);
nxy1 = grad3(perm[ix0 + perm[iy1 + perm[iz1]]], fx0, fy1, fz1);
nx1 = LERP( r, nxy0, nxy1 );
n0 = LERP( t, nx0, nx1 );
nxy0 = grad3(perm[ix1 + perm[iy0 + perm[iz0]]], fx1, fy0, fz0);
nxy1 = grad3(perm[ix1 + perm[iy0 + perm[iz1]]], fx1, fy0, fz1);
nx0 = LERP( r, nxy0, nxy1 );
nxy0 = grad3(perm[ix1 + perm[iy1 + perm[iz0]]], fx1, fy1, fz0);
nxy1 = grad3(perm[ix1 + perm[iy1 + perm[iz1]]], fx1, fy1, fz1);
nx1 = LERP( r, nxy0, nxy1 );
n1 = LERP( t, nx0, nx1 );
return 0.936f * ( LERP( s, n0, n1 ) );
}
//---------------------------------------------------------------------
/** 3D float Perlin periodic noise.
*/
float pnoise3( float x, float y, float z, int px, int py, int pz )
{
int ix0, iy0, ix1, iy1, iz0, iz1;
float fx0, fy0, fz0, fx1, fy1, fz1;
float s, t, r;
float nxy0, nxy1, nx0, nx1, n0, n1;
ix0 = FASTFLOOR( x ); // Integer part of x
iy0 = FASTFLOOR( y ); // Integer part of y
iz0 = FASTFLOOR( z ); // Integer part of z
fx0 = x - ix0; // Fractional part of x
fy0 = y - iy0; // Fractional part of y
fz0 = z - iz0; // Fractional part of z
fx1 = fx0 - 1.0f;
fy1 = fy0 - 1.0f;
fz1 = fz0 - 1.0f;
ix1 = (( ix0 + 1 ) % px ) & 0xff; // Wrap to 0..px-1 and wrap to 0..255
iy1 = (( iy0 + 1 ) % py ) & 0xff; // Wrap to 0..py-1 and wrap to 0..255
iz1 = (( iz0 + 1 ) % pz ) & 0xff; // Wrap to 0..pz-1 and wrap to 0..255
ix0 = ( ix0 % px ) & 0xff;
iy0 = ( iy0 % py ) & 0xff;
iz0 = ( iz0 % pz ) & 0xff;
r = FADE( fz0 );
t = FADE( fy0 );
s = FADE( fx0 );
nxy0 = grad3(perm[ix0 + perm[iy0 + perm[iz0]]], fx0, fy0, fz0);
nxy1 = grad3(perm[ix0 + perm[iy0 + perm[iz1]]], fx0, fy0, fz1);
nx0 = LERP( r, nxy0, nxy1 );
nxy0 = grad3(perm[ix0 + perm[iy1 + perm[iz0]]], fx0, fy1, fz0);
nxy1 = grad3(perm[ix0 + perm[iy1 + perm[iz1]]], fx0, fy1, fz1);
nx1 = LERP( r, nxy0, nxy1 );
n0 = LERP( t, nx0, nx1 );
nxy0 = grad3(perm[ix1 + perm[iy0 + perm[iz0]]], fx1, fy0, fz0);
nxy1 = grad3(perm[ix1 + perm[iy0 + perm[iz1]]], fx1, fy0, fz1);
nx0 = LERP( r, nxy0, nxy1 );
nxy0 = grad3(perm[ix1 + perm[iy1 + perm[iz0]]], fx1, fy1, fz0);
nxy1 = grad3(perm[ix1 + perm[iy1 + perm[iz1]]], fx1, fy1, fz1);
nx1 = LERP( r, nxy0, nxy1 );
n1 = LERP( t, nx0, nx1 );
return 0.936f * ( LERP( s, n0, n1 ) );
}
//---------------------------------------------------------------------
/** 4D float Perlin noise.
*/
float noise4( float x, float y, float z, float w )
{
int ix0, iy0, iz0, iw0, ix1, iy1, iz1, iw1;
float fx0, fy0, fz0, fw0, fx1, fy1, fz1, fw1;
float s, t, r, q;
float nxyz0, nxyz1, nxy0, nxy1, nx0, nx1, n0, n1;
ix0 = FASTFLOOR( x ); // Integer part of x
iy0 = FASTFLOOR( y ); // Integer part of y
iz0 = FASTFLOOR( z ); // Integer part of y
iw0 = FASTFLOOR( w ); // Integer part of w
fx0 = x - ix0; // Fractional part of x
fy0 = y - iy0; // Fractional part of y
fz0 = z - iz0; // Fractional part of z
fw0 = w - iw0; // Fractional part of w
fx1 = fx0 - 1.0f;
fy1 = fy0 - 1.0f;
fz1 = fz0 - 1.0f;
fw1 = fw0 - 1.0f;
ix1 = ( ix0 + 1 ) & 0xff; // Wrap to 0..255
iy1 = ( iy0 + 1 ) & 0xff;
iz1 = ( iz0 + 1 ) & 0xff;
iw1 = ( iw0 + 1 ) & 0xff;
ix0 = ix0 & 0xff;
iy0 = iy0 & 0xff;
iz0 = iz0 & 0xff;
iw0 = iw0 & 0xff;
q = FADE( fw0 );
r = FADE( fz0 );
t = FADE( fy0 );
s = FADE( fx0 );
nxyz0 = grad4(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx0, fy0, fz0, fw0);
nxyz1 = grad4(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx0, fy0, fz0, fw1);
nxy0 = LERP( q, nxyz0, nxyz1 );
nxyz0 = grad4(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx0, fy0, fz1, fw0);
nxyz1 = grad4(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx0, fy0, fz1, fw1);
nxy1 = LERP( q, nxyz0, nxyz1 );
nx0 = LERP ( r, nxy0, nxy1 );
nxyz0 = grad4(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx0, fy1, fz0, fw0);
nxyz1 = grad4(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx0, fy1, fz0, fw1);
nxy0 = LERP( q, nxyz0, nxyz1 );
nxyz0 = grad4(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx0, fy1, fz1, fw0);
nxyz1 = grad4(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx0, fy1, fz1, fw1);
nxy1 = LERP( q, nxyz0, nxyz1 );
nx1 = LERP ( r, nxy0, nxy1 );
n0 = LERP( t, nx0, nx1 );
nxyz0 = grad4(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx1, fy0, fz0, fw0);
nxyz1 = grad4(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx1, fy0, fz0, fw1);
nxy0 = LERP( q, nxyz0, nxyz1 );
nxyz0 = grad4(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx1, fy0, fz1, fw0);
nxyz1 = grad4(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx1, fy0, fz1, fw1);
nxy1 = LERP( q, nxyz0, nxyz1 );
nx0 = LERP ( r, nxy0, nxy1 );
nxyz0 = grad4(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx1, fy1, fz0, fw0);
nxyz1 = grad4(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx1, fy1, fz0, fw1);
nxy0 = LERP( q, nxyz0, nxyz1 );
nxyz0 = grad4(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx1, fy1, fz1, fw0);
nxyz1 = grad4(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx1, fy1, fz1, fw1);
nxy1 = LERP( q, nxyz0, nxyz1 );
nx1 = LERP ( r, nxy0, nxy1 );
n1 = LERP( t, nx0, nx1 );
return 0.87f * ( LERP( s, n0, n1 ) );
}
//---------------------------------------------------------------------
/** 4D float Perlin periodic noise.
*/
float pnoise4( float x, float y, float z, float w,
int px, int py, int pz, int pw )
{
int ix0, iy0, iz0, iw0, ix1, iy1, iz1, iw1;
float fx0, fy0, fz0, fw0, fx1, fy1, fz1, fw1;
float s, t, r, q;
float nxyz0, nxyz1, nxy0, nxy1, nx0, nx1, n0, n1;
ix0 = FASTFLOOR( x ); // Integer part of x
iy0 = FASTFLOOR( y ); // Integer part of y
iz0 = FASTFLOOR( z ); // Integer part of y
iw0 = FASTFLOOR( w ); // Integer part of w
fx0 = x - ix0; // Fractional part of x
fy0 = y - iy0; // Fractional part of y
fz0 = z - iz0; // Fractional part of z
fw0 = w - iw0; // Fractional part of w
fx1 = fx0 - 1.0f;
fy1 = fy0 - 1.0f;
fz1 = fz0 - 1.0f;
fw1 = fw0 - 1.0f;
ix1 = (( ix0 + 1 ) % px ) & 0xff; // Wrap to 0..px-1 and wrap to 0..255
iy1 = (( iy0 + 1 ) % py ) & 0xff; // Wrap to 0..py-1 and wrap to 0..255
iz1 = (( iz0 + 1 ) % pz ) & 0xff; // Wrap to 0..pz-1 and wrap to 0..255
iw1 = (( iw0 + 1 ) % pw ) & 0xff; // Wrap to 0..pw-1 and wrap to 0..255
ix0 = ( ix0 % px ) & 0xff;
iy0 = ( iy0 % py ) & 0xff;
iz0 = ( iz0 % pz ) & 0xff;
iw0 = ( iw0 % pw ) & 0xff;
q = FADE( fw0 );
r = FADE( fz0 );
t = FADE( fy0 );
s = FADE( fx0 );
nxyz0 = grad4(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx0, fy0, fz0, fw0);
nxyz1 = grad4(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx0, fy0, fz0, fw1);
nxy0 = LERP( q, nxyz0, nxyz1 );
nxyz0 = grad4(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx0, fy0, fz1, fw0);
nxyz1 = grad4(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx0, fy0, fz1, fw1);
nxy1 = LERP( q, nxyz0, nxyz1 );
nx0 = LERP ( r, nxy0, nxy1 );
nxyz0 = grad4(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx0, fy1, fz0, fw0);
nxyz1 = grad4(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx0, fy1, fz0, fw1);
nxy0 = LERP( q, nxyz0, nxyz1 );
nxyz0 = grad4(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx0, fy1, fz1, fw0);
nxyz1 = grad4(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx0, fy1, fz1, fw1);
nxy1 = LERP( q, nxyz0, nxyz1 );
nx1 = LERP ( r, nxy0, nxy1 );
n0 = LERP( t, nx0, nx1 );
nxyz0 = grad4(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx1, fy0, fz0, fw0);
nxyz1 = grad4(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx1, fy0, fz0, fw1);
nxy0 = LERP( q, nxyz0, nxyz1 );
nxyz0 = grad4(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx1, fy0, fz1, fw0);
nxyz1 = grad4(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx1, fy0, fz1, fw1);
nxy1 = LERP( q, nxyz0, nxyz1 );
nx0 = LERP ( r, nxy0, nxy1 );
nxyz0 = grad4(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx1, fy1, fz0, fw0);
nxyz1 = grad4(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx1, fy1, fz0, fw1);
nxy0 = LERP( q, nxyz0, nxyz1 );
nxyz0 = grad4(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx1, fy1, fz1, fw0);
nxyz1 = grad4(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx1, fy1, fz1, fw1);
nxy1 = LERP( q, nxyz0, nxyz1 );
nx1 = LERP ( r, nxy0, nxy1 );
n1 = LERP( t, nx0, nx1 );
return 0.87f * ( LERP( s, n0, n1 ) );
}
//---------------------------------------------------------------------