-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathYmet-Xnom2fac-MnormalHom.stan
72 lines (66 loc) · 1.62 KB
/
Ymet-Xnom2fac-MnormalHom.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
data {
int<lower=0> n_total;
int<lower=1>n_x1_lvl;
int<lower=1>n_x2_lvl;
real y[n_total];
int x1[n_total];
int x2[n_total];
real<lower=0> a_gamma_sh_ra[2];
}
transformed data {
real y_mean;
real y_sd;
y_mean = mean(y);
y_sd = sd(y);
}
parameters {
real<lower=0> y_sigma;
real a0;
vector[n_x1_lvl] a1;
vector[n_x2_lvl] a2;
vector[n_x2_lvl] a1a2[n_x1_lvl];
real<lower=0> a1_sd;
real<lower=0> a2_sd;
real<lower=0> a1a2_sd;
}
transformed parameters {
vector[n_total] mu;
for (n in 1:n_total) {
mu[n] = a0 + a1[x1[n]] + a2[x2[n]] + a1a2[x1[n],x2[n]];
}
}
model {
y ~ normal(mu, y_sigma);
//y_sigma ~ uniform(y_sd / 100, y_sd * 10);
a0 ~ normal(y_mean, y_sd * 5);
a1 ~ normal(0.0, a1_sd);
a2 ~ normal(0.0, a2_sd);
for (n in 1:n_x1_lvl) {
a1a2[n] ~ normal(0.0, a1a2_sd);
}
// or try a folded t (Cauchy)
a1_sd ~ gamma(a_gamma_sh_ra[1], a_gamma_sh_ra[2]);
a2_sd ~ gamma(a_gamma_sh_ra[1], a_gamma_sh_ra[2]);
a1a2_sd ~ gamma(a_gamma_sh_ra[1], a_gamma_sh_ra[2]);
}
generated quantities {
matrix[n_x1_lvl,n_x2_lvl] m;
real b0;
vector[n_x1_lvl] b1;
vector[n_x2_lvl] b2;
real b1b2[n_x1_lvl,n_x2_lvl];
// Convert a0,a1[],a2[],a1a2[,] to sum-to-zero b0,b1[],b2[],b1b2[,] :
for (j1 in 1:n_x1_lvl) {
for (j2 in 1:n_x2_lvl) {
m[j1,j2] = a0 + a1[j1] + a2[j2] + a1a2[j1,j2]; // cell means
}
}
b0 = mean(m);
for (j1 in 1:n_x1_lvl) { b1[j1] = mean(row(m,j1)) - b0; }
for (j2 in 1:n_x2_lvl) { b2[j2] = mean(col(m,j2)) - b0; }
for (j1 in 1:n_x1_lvl) {
for (j2 in 1:n_x2_lvl) {
b1b2[j1,j2] = m[j1,j2] - (b0 + b1[j1] + b2[j2]);
}
}
}