-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhspnet.py
69 lines (58 loc) · 2.52 KB
/
hspnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
from torch.cuda.amp import autocast # type: ignore
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from dataset import build_dataset
from log import logger
from model import load_clip_model, HSPNet
from utils import ModelEma, get_ema_co
from config import cfg # isort:skip
class HSPNetTrainer():
def __init__(self) -> None:
super().__init__()
clip_model, _ = load_clip_model()
# image_size = clip_model.visual.input_resolution
image_size = cfg.image_size
train_preprocess = transforms.Compose([
transforms.Resize(image_size,
interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711)),
])
val_preprocess = transforms.Compose([
transforms.Resize(image_size,
interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711)),
])
train_loader, val_loader = build_dataset(train_preprocess,
val_preprocess)
self.train_loader = train_loader
self.val_loader = val_loader
classnames = val_loader.dataset.labels()
assert (len(classnames) == cfg.num_classes)
self.model = HSPNet(classnames, clip_model)
self.classnames = classnames
logger.info("Turning off gradients in the text encoder")
for name, param in self.model.named_parameters():
if "text_encoder" in name:
param.requires_grad_(False)
self.model.cuda()
ema_co = get_ema_co()
logger.info(f"EMA CO: {ema_co}")
self.ema = ModelEma(self.model, ema_co) # 0.9997^641=0.82
def train(self, input, target, criterion, epoch, epoch_i) -> torch.Tensor:
index, image = input
image = image.cuda()
with autocast(): # mixed precision
output = self.model(
image).float() # sigmoid will be done in loss !
if cfg.loss == 'SPLC':
loss, labels = criterion(output, target, epoch)
else:
loss, labels = criterion(output, target)
return loss