forked from jayg996/BTC-ISMIR19
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbtc_model.py
198 lines (154 loc) · 7.19 KB
/
btc_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from utils.transformer_modules import *
from utils.transformer_modules import _gen_timing_signal, _gen_bias_mask
from utils.hparams import HParams
use_cuda = torch.cuda.is_available()
class self_attention_block(nn.Module):
def __init__(self, hidden_size, total_key_depth, total_value_depth, filter_size, num_heads,
bias_mask=None, layer_dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, attention_map=False):
super(self_attention_block, self).__init__()
self.attention_map = attention_map
self.multi_head_attention = MultiHeadAttention(hidden_size, total_key_depth, total_value_depth,hidden_size, num_heads, bias_mask, attention_dropout, attention_map)
self.positionwise_convolution = PositionwiseFeedForward(hidden_size, filter_size, hidden_size, layer_config='cc', padding='both', dropout=relu_dropout)
self.dropout = nn.Dropout(layer_dropout)
self.layer_norm_mha = LayerNorm(hidden_size)
self.layer_norm_ffn = LayerNorm(hidden_size)
def forward(self, inputs):
x = inputs
# Layer Normalization
x_norm = self.layer_norm_mha(x)
# Multi-head attention
if self.attention_map is True:
y, weights = self.multi_head_attention(x_norm, x_norm, x_norm)
else:
y = self.multi_head_attention(x_norm, x_norm, x_norm)
# Dropout and residual
x = self.dropout(x + y)
# Layer Normalization
x_norm = self.layer_norm_ffn(x)
# Positionwise Feedforward
y = self.positionwise_convolution(x_norm)
# Dropout and residual
y = self.dropout(x + y)
if self.attention_map is True:
return y, weights
return y
class bi_directional_self_attention(nn.Module):
def __init__(self, hidden_size, total_key_depth, total_value_depth, filter_size, num_heads, max_length,
layer_dropout=0.0, attention_dropout=0.0, relu_dropout=0.0):
super(bi_directional_self_attention, self).__init__()
self.weights_list = list()
params = (hidden_size,
total_key_depth or hidden_size,
total_value_depth or hidden_size,
filter_size,
num_heads,
_gen_bias_mask(max_length),
layer_dropout,
attention_dropout,
relu_dropout,
True)
self.attn_block = self_attention_block(*params)
params = (hidden_size,
total_key_depth or hidden_size,
total_value_depth or hidden_size,
filter_size,
num_heads,
torch.transpose(_gen_bias_mask(max_length), dim0=2, dim1=3),
layer_dropout,
attention_dropout,
relu_dropout,
True)
self.backward_attn_block = self_attention_block(*params)
self.linear = nn.Linear(hidden_size*2, hidden_size)
def forward(self, inputs):
x, list = inputs
# Forward Self-attention Block
encoder_outputs, weights = self.attn_block(x)
# Backward Self-attention Block
reverse_outputs, reverse_weights = self.backward_attn_block(x)
# Concatenation and Fully-connected Layer
outputs = torch.cat((encoder_outputs, reverse_outputs), dim=2)
y = self.linear(outputs)
# Attention weights for Visualization
self.weights_list = list
self.weights_list.append(weights)
self.weights_list.append(reverse_weights)
return y, self.weights_list
class bi_directional_self_attention_layers(nn.Module):
def __init__(self, embedding_size, hidden_size, num_layers, num_heads, total_key_depth, total_value_depth,
filter_size, max_length=100, input_dropout=0.0, layer_dropout=0.0,
attention_dropout=0.0, relu_dropout=0.0):
super(bi_directional_self_attention_layers, self).__init__()
self.timing_signal = _gen_timing_signal(max_length, hidden_size)
params = (hidden_size,
total_key_depth or hidden_size,
total_value_depth or hidden_size,
filter_size,
num_heads,
max_length,
layer_dropout,
attention_dropout,
relu_dropout)
self.embedding_proj = nn.Linear(embedding_size, hidden_size, bias=False)
self.self_attn_layers = nn.Sequential(*[bi_directional_self_attention(*params) for l in range(num_layers)])
self.layer_norm = LayerNorm(hidden_size)
self.input_dropout = nn.Dropout(input_dropout)
def forward(self, inputs):
# Add input dropout
x = self.input_dropout(inputs)
# Project to hidden size
x = self.embedding_proj(x)
# Add timing signal
x += self.timing_signal[:, :inputs.shape[1], :].type_as(inputs.data)
# A Stack of Bi-directional Self-attention Layers
y, weights_list = self.self_attn_layers((x, []))
# Layer Normalization
y = self.layer_norm(y)
return y, weights_list
class BTC_model(nn.Module):
def __init__(self, config):
super(BTC_model, self).__init__()
self.timestep = config['timestep']
self.probs_out = config['probs_out']
params = (config['feature_size'],
config['hidden_size'],
config['num_layers'],
config['num_heads'],
config['total_key_depth'],
config['total_value_depth'],
config['filter_size'],
config['timestep'],
config['input_dropout'],
config['layer_dropout'],
config['attention_dropout'],
config['relu_dropout'])
self.self_attn_layers = bi_directional_self_attention_layers(*params)
self.output_layer = SoftmaxOutputLayer(hidden_size=config['hidden_size'], output_size=config['num_chords'], probs_out=config['probs_out'])
def forward(self, x, labels):
labels = labels.view(-1, self.timestep)
# Output of Bi-directional Self-attention Layers
self_attn_output, weights_list = self.self_attn_layers(x)
# return logit values for CRF
if self.probs_out is True:
logits = self.output_layer(self_attn_output)
return logits
# Output layer and Soft-max
prediction,second = self.output_layer(self_attn_output)
prediction = prediction.view(-1)
second = second.view(-1)
# Loss Calculation
loss = self.output_layer.loss(self_attn_output, labels)
return prediction, loss, weights_list, second
if __name__ == "__main__":
config = HParams.load("run_config.yaml")
device = torch.device("cuda" if use_cuda else "cpu")
batch_size = 2
timestep = 108
feature_size = 144
num_chords = 25
features = torch.randn(batch_size,timestep,feature_size,requires_grad=True).to(device)
chords = torch.randint(25,(batch_size*timestep,)).to(device)
model = BTC_model(config=config.model).to(device)
prediction, loss, weights_list, second = model(features, chords)
print(prediction.size())
print(loss)