-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_generator.py
306 lines (254 loc) · 14 KB
/
dataset_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# -*- coding: utf-8 -*-
"""
Using partial code from
Vrachimis et al. https://github.com/KIOS-Research/BattLeDIM
"""
import pandas as pd
import numpy as np
import wntr
import pickle
import os
import argparse
import time
from math import sqrt, ceil
import warnings, copy
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
def create_cli_parser():
# ----- ----- ----- ----- ----- -----
# Command line arguments
# ----- ----- ----- ----- ----- -----
parser = argparse.ArgumentParser()
parser.add_argument('--wdn',
default = 'l_town',
type = str,
choices = ['hanoi', 'fossolo', 'pescara', 'l_town', 'zhijiang'],
help = "specify the WDS for which you want to simulate the scenarios; default is l_town ")
parser.add_argument('--start_scenario',
default = 1,
type = int,
help = "specify the start scenario name, must be an integer; default is 1")
parser.add_argument('--end_scenario',
default = 50,
type = int,
help = "specify the end scenario name, must be an integer; default is 50")
parser.add_argument('--sigma_dem',
default = 0.1,
type = float,
help = "Specify the standard deviation of the noise to be added to the demand patterns; default is 0.1.")
parser.add_argument('--sigma_dia',
default = 1/30,
type = float,
help = "Specify the standard deviation of the noise to be added to the diameters; default is 1/30")
parser.add_argument('--_seed',
default = None,
type = int,
help = "Specify the random seed for noise; default is None, where it will be set to the scenario name for every scenario.")
parser.add_argument('--start_time',
default = '2018-01-01 00:00',
type = str,
help = "Specify the start time of the simulation; default is 2018-01-01 00:00, the samples will be sampled every 30 minutes starting from this time.")
parser.add_argument('--end_time',
default = '2018-01-14 23:30',
type = str,
help = "Specify the end time of the simulation; default is 2018-01-14 23:30.")
return parser
class DatasetCreator:
def __init__(self, scenario_folder, inp_file, start_time, end_time):
self.scenario_folder = scenario_folder
print(f'Run input file: "{inp_file}"')
self.results_folder = os.path.join(os.getcwd(), scenario_folder, "Results-Clean")
# Create Results folder
if not os.path.isdir(self.results_folder):
os.system('mkdir ' + self.results_folder)
# demand-driven (DD) or pressure dependent demand (PDD)
Mode_Simulation = 'DD'
# Load EPANET network file
self.wn = wntr.network.WaterNetworkModel(inp_file)
self.wn.options.hydraulic.demand_model = Mode_Simulation
self.nodes = self.wn.get_graph().nodes()
self.links = self.wn.link_name_list
# Get time step
self.time_step = round(self.wn.options.time.hydraulic_timestep)
# Create time_stamp
self.time_stamp = pd.date_range(start_time, end_time, freq=str(self.time_step / 60) + "min")
# Simulation duration in steps
self.wn.options.time.duration = (len(self.time_stamp) - 1) * self.time_step
def dataset_generator(self, scenario_times=[]):
# Path of EPANET Input File
print(f"Dataset Generator run...")
# Save the water network model to a file before using it in a simulation
with open(os.path.join(os.getcwd(), self.scenario_folder,'self.wn.pickle'), 'wb') as f:
pickle.dump(self.wn, f)
# Run wntr simulator
scenario_start_time = time.time()
sim = wntr.sim.WNTRSimulator(self.wn)
results = sim.run_sim()
scenario_end_time = time.time()
scenario_time = scenario_end_time - scenario_start_time
scenario_times.append(scenario_time)
print('... simulation done!')
if results.node["pressure"].empty:
print("Negative pressures.")
return -1
if results:
decimal_size = 6
# Create xlsx file with Measurements
def export_measurements(pressure_sensors, flow_sensors, file_out="Measurements.xlsx"):
total_pressures = {'Timestamp': self.time_stamp}
total_demands = {'Timestamp': self.time_stamp}
total_flows = {'Timestamp': self.time_stamp}
total_levels = {'Timestamp': self.time_stamp}
total_heads = {'Timestamp': self.time_stamp}
for j in range(0, self.wn.num_nodes):
node_id = self.wn.node_name_list[j]
if node_id in pressure_sensors:
pres = results.node['pressure'][node_id]
pres = pres[:len(self.time_stamp)]
pres = [round(elem, decimal_size) for elem in pres]
total_pressures[node_id] = pres
head = results.node['head'][node_id]
head = head[:len(self.time_stamp)]
head = [round(elem, decimal_size) for elem in head]
total_heads[node_id] = head
dem = results.node['demand'][node_id]
dem = dem[:len(self.time_stamp)]
dem = [round(elem, decimal_size) for elem in dem]
total_demands[node_id] = dem
level_pres = results.node['pressure'][node_id]
level_pres = level_pres[:len(self.time_stamp)]
level_pres = [round(elem, decimal_size) for elem in level_pres]
total_levels[node_id] = level_pres
for j in range(0, self.wn.num_links):
link_id = self.wn.link_name_list[j]
if link_id not in flow_sensors:
continue
flows = results.link['flowrate'][link_id]
flows = [round(elem, decimal_size) for elem in flows]
flows = flows[:len(self.time_stamp)]
total_flows[link_id] = flows
# Loading original demands
dem_multiplier = self.wn.options.hydraulic.demand_multiplier
n_timesteps = len(self.time_stamp)
orig_demands = {'Timestamp': self.time_stamp}
for node_id in self.wn.node_name_list:
node_dem = 0
if self.wn.nodes._data[node_id].node_type == 'Junction':
for patterns in self.wn.nodes._data[node_id].demand_timeseries_list._list:
if patterns.pattern.multipliers is not None:
node_dem += (patterns.base_value * dem_multiplier) * patterns.pattern.multipliers[: n_timesteps]
else:
node_dem += patterns.base_value * dem_multiplier
try:
repeat_idx = ceil(n_timesteps / len(node_dem))
node_dem_copy = copy.deepcopy(node_dem)
for i in range(1, repeat_idx):
node_dem = np.concatenate((node_dem, node_dem_copy))
orig_demands[node_id] = node_dem[: n_timesteps] #* 3600 * 1000
except:
orig_demands[node_id] = node_dem
# Create a Pandas dataframe from the data.
df1 = pd.DataFrame(total_pressures)
df2 = pd.DataFrame(total_demands)
df3 = pd.DataFrame(total_flows)
df4 = pd.DataFrame(total_levels)
df5 = pd.DataFrame(total_heads)
df6 = pd.DataFrame(orig_demands)
print("Minimum Pressure: ", df1.min(numeric_only=True).min(), "Maximum Pressure: ", df1.max(numeric_only=True).max())
print("Minimum Head: ", df5.min(numeric_only=True).min(), "Maximum Head: ", df5.max(numeric_only=True).max())
# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter(os.path.join(self.results_folder, file_out), engine='xlsxwriter')
# Convert the dataframe to an XlsxWriter Excel object.
# Pressures (m), Demands (m^3/s), Flows (m^3/s), Levels (m), Heads (m)
df1.to_excel(writer, sheet_name='Pressures (m)', index=False)
df2.to_excel(writer, sheet_name='Demands (m3_s)', index=False)
df3.to_excel(writer, sheet_name='Flows (m3_s)', index=False)
df4.to_excel(writer, sheet_name='Levels (m)', index=False)
df5.to_excel(writer, sheet_name='Heads (m)', index=False)
df6.to_excel(writer, sheet_name='Orig_Demands (m3_s)', index=False)
# Close the Pandas Excel writer and output the Excel file.
writer.save()
# Export as .csv files -- .csv files are much faster parsed by pandas than huge .xlsx files!
df1.to_csv(os.path.join(self.results_folder, file_out.replace(".xlsx", "_Pressures.csv")), index=False)
df2.to_csv(os.path.join(self.results_folder, file_out.replace(".xlsx", "_Demands.csv")), index=False)
df3.to_csv(os.path.join(self.results_folder, file_out.replace(".xlsx", "_Flows.csv")), index=False)
df4.to_csv(os.path.join(self.results_folder, file_out.replace(".xlsx", "_Levels.csv")), index=False)
df5.to_csv(os.path.join(self.results_folder, file_out.replace(".xlsx", "_Heads.csv")), index=False)
df6.to_csv(os.path.join(self.results_folder, file_out.replace(".xlsx", "_Orig_Demands.csv")), index=False)
# Export all measurements
export_measurements(self.nodes, self.links, "Measurements_All.xlsx")
# Clean up
os.remove(os.path.join(os.getcwd(), self.scenario_folder,'self.wn.pickle'))
else:
print('Results empty.')
return -1
return scenario_times
def run(wdn = 'l_town', start_scenario=1, end_scenario=50, scenario_times=[], sigma_dem=0.1, sigma_dia=1/30,
in_seed=None, start_time='2018-01-01 00:00', end_time='2018-01-14 23:30'):
for s in range(start_scenario, end_scenario + 1):
scenario = 's' + str(s)
save_dir = os.path.join(os.getcwd(),"networks", wdn)
scenario_dir = os.path.join(save_dir, scenario)
if not os.path.isdir(scenario_dir):
os.system('mkdir ' + scenario_dir)
if wdn == "hanoi":
inp_file = os.path.join(scenario_dir, "Hanoi_CMH_Scenario-" + str(s) + ".inp")
else:
inp_file = os.path.join(save_dir, wdn + ".inp")
t = time.time()
wn = wntr.network.WaterNetworkModel(inp_file)
if in_seed is None:
_seed = s
else:
_seed = in_seed
np.random.seed(_seed)
print('Seed used for scenario ', s)
pattern_offset = np.round(np.random.normal(0, sigma_dem, size = 1), 6)
if wdn != "hanoi" and wdn != "l_town":
_len = 48*7*2
pattern = np.round(np.random.normal(1, .1, size = _len), 6).clip(0)
wn.add_pattern(
name = "random_week",
pattern = pattern + pattern_offset
)
if wdn == "l_town":
_len = len(wn.patterns._data['P-Residential'].multipliers)
wn.patterns._data['P-Residential'].multipliers = \
wn.patterns._data['P-Residential'].multipliers + \
np.round(np.random.normal(0, sigma_dem, size = 1), 6).clip(0)
if wdn != "hanoi":
for key, value in wn.links._data.items():
wn.links._data[key].diameter = \
wn.links._data[key].diameter * ( 1 + np.random.normal(0, sigma_dia, size=1)[0] )
filename = os.path.join(scenario_dir, wdn + ".inp")
out_inp = wntr.epanet.io.InpFile()
out_inp.write(
filename,
wn = wn,
units = None,
version = 2.2,
force_coordinates = False
)
inp_file = filename
# Call dataset creator
L = DatasetCreator(scenario_dir, inp_file, start_time, end_time)
scenario_times = L.dataset_generator(scenario_times)
print('\nScenario ' + scenario + ' generated. Total Elapsed time is ' + str(time.time() - t) + ' seconds.\n')
return scenario_times
if __name__ == '__main__':
parser = create_cli_parser()
args = parser.parse_args()
scenario_times = []
scenario_times = run(
args.wdn,
args.start_scenario,
args.end_scenario,
scenario_times,
args.sigma_dem,
args.sigma_dia,
args._seed,
args.start_time,
args.end_time
)
print("Total Simulation Time for all Scenarios: ", np.sum(scenario_times))
print("Scenarios Simulation Times: ", scenario_times)