-
Notifications
You must be signed in to change notification settings - Fork 854
/
Copy pathtest_tokenizer.py
549 lines (464 loc) · 21.3 KB
/
test_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import pickle
import numpy as np
import pytest
from tokenizers import AddedToken, Encoding, Tokenizer
from tokenizers.implementations import BertWordPieceTokenizer
from tokenizers.models import BPE, Model, Unigram
from tokenizers.pre_tokenizers import ByteLevel
from tokenizers.processors import RobertaProcessing
from ..utils import bert_files, data_dir, multiprocessing_with_parallelism, roberta_files
class TestAddedToken:
def test_instantiate_with_content_only(self):
added_token = AddedToken("<mask>")
added_token.content = "<MASK>"
assert added_token.content == "<MASK>"
assert type(added_token) == AddedToken
added_token.content = added_token.content.lower()
assert added_token.special == False
added_token.special = True
assert added_token.special == True
added_token.special = False
assert str(added_token) == "<mask>"
assert (
repr(added_token)
== 'AddedToken("<mask>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False)'
)
assert added_token.rstrip == False
assert added_token.lstrip == False
assert added_token.single_word == False
assert added_token.normalized == True
assert isinstance(pickle.loads(pickle.dumps(added_token)), AddedToken)
def test_can_set_rstrip(self):
added_token = AddedToken("<mask>", rstrip=True)
assert added_token.rstrip == True
assert added_token.lstrip == False
assert added_token.single_word == False
assert added_token.normalized == True
def test_can_set_lstrip(self):
added_token = AddedToken("<mask>", lstrip=True)
assert added_token.rstrip == False
assert added_token.lstrip == True
assert added_token.single_word == False
assert added_token.normalized == True
def test_can_set_single_world(self):
added_token = AddedToken("<mask>", single_word=True)
assert added_token.rstrip == False
assert added_token.lstrip == False
assert added_token.single_word == True
assert added_token.normalized == True
def test_can_set_normalized(self):
added_token = AddedToken("<mask>", normalized=False)
assert added_token.rstrip == False
assert added_token.lstrip == False
assert added_token.single_word == False
assert added_token.normalized == False
class TestTokenizer:
def test_has_expected_type_and_methods(self):
tokenizer = Tokenizer(BPE())
assert type(tokenizer) == Tokenizer
assert callable(tokenizer.num_special_tokens_to_add)
assert callable(tokenizer.get_vocab)
assert callable(tokenizer.get_vocab_size)
assert callable(tokenizer.enable_truncation)
assert callable(tokenizer.no_truncation)
assert callable(tokenizer.enable_padding)
assert callable(tokenizer.no_padding)
assert callable(tokenizer.encode)
assert callable(tokenizer.encode_batch)
assert callable(tokenizer.decode)
assert callable(tokenizer.decode_batch)
assert callable(tokenizer.token_to_id)
assert callable(tokenizer.id_to_token)
assert callable(tokenizer.add_tokens)
assert callable(tokenizer.add_special_tokens)
assert callable(tokenizer.train)
assert callable(tokenizer.post_process)
assert isinstance(tokenizer.model, Model)
assert tokenizer.normalizer is None
assert tokenizer.pre_tokenizer is None
assert tokenizer.post_processor is None
assert tokenizer.decoder is None
assert isinstance(pickle.loads(pickle.dumps(Tokenizer(BPE()))), Tokenizer)
def test_add_tokens(self):
tokenizer = Tokenizer(BPE())
added = tokenizer.add_tokens(["my", "name", "is", "john"])
assert added == 4
tokens = [AddedToken("the"), AddedToken("quick", normalized=False), AddedToken()]
assert tokens[0].normalized == True
added = tokenizer.add_tokens(tokens)
assert added == 2
assert tokens[0].normalized == True
assert tokens[1].normalized == False
def test_add_special_tokens(self):
tokenizer = Tokenizer(BPE())
# Can add special tokens as `str`
added = tokenizer.add_special_tokens(["my", "name", "is", "john"])
assert added == 4
# Can add special tokens as `AddedToken`
tokens = [AddedToken("the"), AddedToken("quick", normalized=True), AddedToken()]
assert tokens[0].normalized == True
added = tokenizer.add_special_tokens(tokens)
assert added == 2
assert tokens[0].normalized == False
assert tokens[1].normalized == True
def test_encode(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# Can encode single sequence
output = tokenizer.encode("my name is john")
assert output.tokens == ["my", "name", "is", "john"]
assert type(output.ids) == list
assert type(output.type_ids) == list
assert type(output.offsets) == list
with pytest.warns(DeprecationWarning):
assert type(output.words) == list
assert type(output.word_ids) == list
assert type(output.special_tokens_mask) == list
assert type(output.attention_mask) == list
assert type(output.overflowing) == list
# Can encode a pair of sequences
output = tokenizer.encode("my name is john", "pair")
assert output.tokens == ["my", "name", "is", "john", "pair"]
assert isinstance(pickle.loads(pickle.dumps(output)), Encoding)
# Can encode a single pre-tokenized sequence
output = tokenizer.encode(["my", "name", "is", "john"], is_pretokenized=True)
assert output.tokens == ["my", "name", "is", "john"]
# Can encode a batch with both a single sequence and a pair of sequences
output = tokenizer.encode_batch(["my name is john", ("my name is john", "pair")])
assert len(output) == 2
def test_encode_formats(self, bert_files):
with pytest.deprecated_call():
tokenizer = BertWordPieceTokenizer(bert_files["vocab"])
# Encode
output = tokenizer.encode("my name is john")
assert output.tokens == ["[CLS]", "my", "name", "is", "john", "[SEP]"]
output = tokenizer.encode("my name is john", "pair")
assert output.tokens == ["[CLS]", "my", "name", "is", "john", "[SEP]", "pair", "[SEP]"]
output = tokenizer.encode(["my", "name", "is", "john"], is_pretokenized=True)
assert output.tokens == ["[CLS]", "my", "name", "is", "john", "[SEP]"]
output = tokenizer.encode(["my", "name", "is", "john"], ["pair"], is_pretokenized=True)
assert output.tokens == ["[CLS]", "my", "name", "is", "john", "[SEP]", "pair", "[SEP]"]
# Encode batch
result_single = [
["[CLS]", "my", "name", "is", "john", "[SEP]"],
["[CLS]", "my", "name", "is", "georges", "[SEP]"],
]
result_pair = [
["[CLS]", "my", "name", "is", "john", "[SEP]", "pair", "[SEP]"],
["[CLS]", "my", "name", "is", "georges", "[SEP]", "pair", "[SEP]"],
]
def format(encodings):
return [e.tokens for e in encodings]
def test_single(input, is_pretokenized=False):
output = tokenizer.encode_batch(input, is_pretokenized=is_pretokenized)
assert format(output) == result_single
def test_pair(input, is_pretokenized=False):
output = tokenizer.encode_batch(input, is_pretokenized=is_pretokenized)
assert format(output) == result_pair
# Classic inputs
# Lists
test_single(["My name is John", "My name is Georges"])
test_pair([("my name is john", "pair"), ("my name is georges", "pair")])
test_pair([["my name is john", "pair"], ["my name is georges", "pair"]])
# Tuples
test_single(("My name is John", "My name is Georges"))
test_pair((("My name is John", "pair"), ("My name is Georges", "pair")))
# Numpy
test_single(np.array(["My name is John", "My name is Georges"]))
test_pair(np.array([("My name is John", "pair"), ("My name is Georges", "pair")]))
test_pair(np.array([["My name is John", "pair"], ["My name is Georges", "pair"]]))
# PreTokenized inputs
# Lists
test_single([["My", "name", "is", "John"], ["My", "name", "is", "Georges"]], True)
test_pair(
[
(["My", "name", "is", "John"], ["pair"]),
(["My", "name", "is", "Georges"], ["pair"]),
],
True,
)
test_pair(
[
[["My", "name", "is", "John"], ["pair"]],
[["My", "name", "is", "Georges"], ["pair"]],
],
True,
)
# Tuples
test_single((("My", "name", "is", "John"), ("My", "name", "is", "Georges")), True)
test_pair(
(
(("My", "name", "is", "John"), ("pair",)),
(("My", "name", "is", "Georges"), ("pair",)),
),
True,
)
test_pair(
(
(["My", "name", "is", "John"], ["pair"]),
(["My", "name", "is", "Georges"], ["pair"]),
),
True,
)
# Numpy
test_single(
np.array([["My", "name", "is", "John"], ["My", "name", "is", "Georges"]]),
True,
)
test_single(
np.array((("My", "name", "is", "John"), ("My", "name", "is", "Georges"))),
True,
)
test_pair(
np.array(
[
[["My", "name", "is", "John"], ["pair"]],
[["My", "name", "is", "Georges"], ["pair"]],
],
dtype=object,
),
True,
)
test_pair(
np.array(
(
(("My", "name", "is", "John"), ("pair",)),
(("My", "name", "is", "Georges"), ("pair",)),
),
dtype=object,
),
True,
)
# Mal formed
with pytest.raises(TypeError, match="TextInputSequence must be str"):
tokenizer.encode([["my", "name"]])
with pytest.raises(TypeError, match="TextInputSequence must be str"):
tokenizer.encode("My name is john", [["pair"]])
with pytest.raises(TypeError, match="TextInputSequence must be str"):
tokenizer.encode("my name is john", ["pair"])
with pytest.raises(TypeError, match="InputSequence must be Union[List[str]"):
tokenizer.encode("My name is john", is_pretokenized=True)
with pytest.raises(TypeError, match="InputSequence must be Union[List[str]"):
tokenizer.encode("My name is john", ["pair"], is_pretokenized=True)
with pytest.raises(TypeError, match="InputSequence must be Union[List[str]"):
tokenizer.encode(["My", "name", "is", "John"], "pair", is_pretokenized=True)
def test_encode_add_special_tokens(self, roberta_files):
with pytest.deprecated_call():
tokenizer = Tokenizer(BPE(roberta_files["vocab"], roberta_files["merges"]))
tokenizer.add_special_tokens(["<s>", "</s>"])
tokenizer.pre_tokenizer = ByteLevel(add_prefix_space=True)
tokenizer.post_processor = RobertaProcessing(
("</s>", tokenizer.token_to_id("</s>")),
("<s>", tokenizer.token_to_id("<s>")),
)
# Can encode with special tokens
output_with_specials = tokenizer.encode("My name is John", add_special_tokens=True)
assert output_with_specials.tokens == ["<s>", "ĠMy", "Ġname", "Ġis", "ĠJohn", "</s>"]
# Can encode without special tokens
output_without_specials = tokenizer.encode("My name is John", add_special_tokens=False)
assert output_without_specials.tokens == ["ĠMy", "Ġname", "Ġis", "ĠJohn"]
def test_truncation(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
tokenizer.enable_truncation(2)
# Can truncate single sequences
output = tokenizer.encode("my name is john")
assert output.tokens == ["my", "name"]
# Can truncate pair sequences as well
output = tokenizer.encode("my name is john", "pair")
assert output.tokens == ["my", "pair"]
# Can get the params and give them to enable_truncation
trunc = tokenizer.truncation
tokenizer.enable_truncation(**trunc)
# Left truncation direction
tokenizer.enable_truncation(2, direction="left")
output = tokenizer.encode("my name is john")
assert output.tokens == ["is", "john"]
output = tokenizer.encode("my name is john", "pair")
assert output.tokens == ["john", "pair"]
def test_padding(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# By default it does nothing when encoding single sequence
tokenizer.enable_padding()
output = tokenizer.encode("my name")
assert output.tokens == ["my", "name"]
# Can pad to the longest in a batch
output = tokenizer.encode_batch(["my name", "my name is john"])
assert all([len(encoding) == 4 for encoding in output])
# Can pad to the specified length otherwise
tokenizer.enable_padding(length=4)
output = tokenizer.encode("my name")
assert output.tokens == ["my", "name", "[PAD]", "[PAD]"]
output = tokenizer.encode("my name", "pair")
assert output.tokens == ["my", "name", "pair", "[PAD]"]
# Can get the params and give them to enable_padding
padding = tokenizer.padding
tokenizer.enable_padding(**padding)
def test_decode(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# Can decode single sequences
output = tokenizer.decode([0, 1, 2, 3])
assert output == "my name is john"
# Can decode batch
output = tokenizer.decode_batch([[0, 1, 2, 3], [4]])
assert output == ["my name is john", "pair"]
def test_get_vocab(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# Can retrieve vocab with added tokens
vocab = tokenizer.get_vocab(with_added_tokens=True)
assert vocab == {"is": 2, "john": 3, "my": 0, "name": 1, "pair": 4}
# Can retrieve vocab without added tokens
vocab = tokenizer.get_vocab(with_added_tokens=False)
assert vocab == {}
# Can retrieve added token decoder
vocab = tokenizer.get_added_tokens_decoder()
assert vocab == {
0: AddedToken("my", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False),
1: AddedToken("name", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False),
2: AddedToken("is", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False),
3: AddedToken("john", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False),
4: AddedToken("pair", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False),
}
def test_get_vocab_size(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
# Can retrieve vocab's size with added tokens
size = tokenizer.get_vocab_size(with_added_tokens=True)
assert size == 5
# Can retrieve vocab's size without added tokens
size = tokenizer.get_vocab_size(with_added_tokens=False)
assert size == 0
def test_post_process(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
tokenizer.enable_truncation(2)
tokenizer.enable_padding(length=4)
encoding = tokenizer.encode("my name is john")
pair_encoding = tokenizer.encode("pair")
# Can post process a single encoding
output = tokenizer.post_process(encoding)
assert output.tokens == ["my", "name", "[PAD]", "[PAD]"]
# Can post process a pair of encodings
output = tokenizer.post_process(encoding, pair_encoding)
assert output.tokens == ["my", "pair", "[PAD]", "[PAD]"]
def test_multiprocessing_with_parallelism(self):
tokenizer = Tokenizer(BPE())
multiprocessing_with_parallelism(tokenizer, False)
multiprocessing_with_parallelism(tokenizer, True)
def test_from_pretrained(self):
tokenizer = Tokenizer.from_pretrained("bert-base-cased")
output = tokenizer.encode("Hey there dear friend!", add_special_tokens=False)
assert output.tokens == ["Hey", "there", "dear", "friend", "!"]
def test_from_pretrained_revision(self):
tokenizer = Tokenizer.from_pretrained("anthony/tokenizers-test")
output = tokenizer.encode("Hey there dear friend!", add_special_tokens=False)
assert output.tokens == ["hey", "there", "dear", "friend", "!"]
tokenizer = Tokenizer.from_pretrained("anthony/tokenizers-test", revision="gpt-2")
output = tokenizer.encode("Hey there dear friend!", add_special_tokens=False)
assert output.tokens == ["Hey", "Ġthere", "Ġdear", "Ġfriend", "!"]
def test_unigram_byte_fallback(self):
vocab = [
("<unk>", 0.0),
("A", -0.01),
("sen", -0.02),
("te", -0.03),
("n", -0.04),
("ce", -0.05),
("<0xF0>", -0.06),
("<0x9F>", -0.06),
("<0xA4>", -0.06),
("<0x97>", -0.06),
(" ", -0.4),
]
tokenizer = tokenizer = Tokenizer(Unigram(vocab, 0, byte_fallback=False))
output = tokenizer.encode("A sentence 🤗")
assert output.ids == [1, 10, 2, 3, 4, 5, 10, 0]
assert output.tokens == ["A", " ", "sen", "te", "n", "ce", " ", "🤗"]
tokenizer = Tokenizer(Unigram(vocab, 0, byte_fallback=True))
output = tokenizer.encode("A sentence 🤗")
assert output.ids == [1, 10, 2, 3, 4, 5, 10, 6, 7, 8, 9]
assert output.tokens == ["A", " ", "sen", "te", "n", "ce", " ", "<0xF0>", "<0x9F>", "<0xA4>", "<0x97>"]
def test_encode_special_tokens(self):
tokenizer = Tokenizer.from_pretrained("t5-base")
tokenizer.add_tokens(["<eot>"])
tokenizer.add_special_tokens(["<end_of_text>"])
output = tokenizer.encode("Hey there<end_of_text> dear<eot>friend!", add_special_tokens=False)
assert output.tokens == ["▁Hey", "▁there", "<end_of_text>", "▁dear", "<eot>", "▁friend", "!"]
tokenizer.encode_special_tokens = True
assert tokenizer.encode_special_tokens == True
output = tokenizer.encode("Hey there<end_of_text> dear<eot>friend!", add_special_tokens=False)
assert output.tokens == [
"▁Hey",
"▁there",
"<",
"end",
"_",
"of",
"_",
"text",
">",
"▁dear",
"<eot>",
"▁friend",
"!",
]
tokenizer.add_tokens(["of_text>"])
output = tokenizer.encode("Hey there<end_of_text> dear<eot>friend!", add_special_tokens=False)
assert output.tokens == ["▁Hey", "▁there", "<", "end", "_", "of_text>", "▁dear", "<eot>", "▁friend", "!"]
def test_splitting(self):
tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-new-metaspace")
tokenizer.pre_tokenizer.split = False
tokenizer.add_tokens([AddedToken("<REPR_END>", rstrip=True, lstrip=True)])
assert tokenizer.encode("<REPR_END>inform<s>. Hey. .", add_special_tokens=False).tokens == [
"<REPR_END>",
"in",
"form",
"<s>",
".",
"▁Hey",
".",
"▁▁▁▁▁▁",
"▁.",
]
assert tokenizer.encode("<REPR_END>inform<s>. Hey. .", add_special_tokens=False).ids == [
32000,
262,
689,
1,
29889,
18637,
29889,
539,
869,
]
assert tokenizer.encode("inform<s>. Hey. .").tokens == [
"<s>",
"▁inform",
"<s>",
".",
"▁Hey",
".",
"▁▁▁▁▁▁",
"▁.",
]
assert tokenizer.encode("inform<s>. Hey. .", add_special_tokens=False).tokens == [
"▁inform",
"<s>",
".",
"▁Hey",
".",
"▁▁▁▁▁▁",
"▁.",
]
def test_decode_special(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_tokens([AddedToken("my", special=True), AddedToken("name", special=False), "is", "john", "pair"])
# Can decode single sequences
output = tokenizer.decode([0, 1, 2, 3], skip_special_tokens=False)
assert output == "my name is john"
output = tokenizer.decode([0, 1, 2, 3], skip_special_tokens=True)
assert output == "name is john"
assert tokenizer.get_added_tokens_decoder()[0] == AddedToken("my", special=True)