-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathws.rs
365 lines (333 loc) · 12.8 KB
/
ws.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
//! Store data in a task-centric store to share with the C layers
//!
//! The workspace is a memory allocator with a simple API that allows Varnish to store data that
//! needs only to live for the lifetime of a task (handling a client or backend request for example).
//! At the end of the task, the workspace is wiped, simplifying memory management.
//!
//! Rust handles its own memory, but some data must be shared/returned to the C caller, and the
//! workspace is usually the easiest store available.
//!
//! **Note:** unless you know what you are doing, you should probably just use the automatic type
//! conversion provided by [`crate::vcl::convert`], or store things in
//! [`crate::vcl::vpriv::VPriv`].
use std::any::type_name;
use std::ffi::{c_char, c_void, CStr};
use std::fmt::Debug;
use std::marker::PhantomData;
use std::mem::{align_of, size_of, transmute, MaybeUninit};
use std::num::NonZeroUsize;
use std::ptr;
use std::slice::from_raw_parts_mut;
use memchr::memchr;
use crate::ffi::{txt, vrt_blob, WS_Allocated, VCL_BLOB, VCL_STRING};
use crate::vcl::VclError;
use crate::{ffi, validate_ws};
/// A workspace object
///
/// Used to allocate memory in an efficient manner, data will live there until the end of the
/// transaction and the workspace is wiped, so there's no need to free the objects living in it.
///
/// The workspace is usually a few tens of kilobytes large, don't be greedy. If you need more
/// space, consider storing your data in a [`VPriv`](crate::vcl::vpriv::VPriv).
#[derive(Debug)]
pub struct Workspace<'a> {
/// Raw pointer to the C struct
pub raw: *mut ffi::ws,
_phantom: PhantomData<&'a ()>,
}
impl<'a> Workspace<'a> {
/// Wrap a raw pointer into an object we can use.
pub(crate) fn from_ptr(raw: *mut ffi::ws) -> Self {
assert!(!raw.is_null(), "raw pointer was null");
Self {
raw,
_phantom: PhantomData,
}
}
/// Allocate a buffer of a given size.
///
/// # Safety
/// Allocated memory is not initialized.
pub unsafe fn alloc(&mut self, size: NonZeroUsize) -> *mut c_void {
#[cfg(not(test))]
{
ffi::WS_Alloc(validate_ws(self.raw), size.get() as u32)
}
#[cfg(test)]
{
// `WS_Alloc` is a private part of `varnishd`, not the Varnish library,
// so it is only available if the output is a `cdylib`.
// When testing, VMOD is a lib or a bin,
// so we have to fake our own allocator.
let ws = validate_ws(self.raw);
let align = align_of::<*const c_void>();
let aligned_sz = ((size.get() + align - 1) / align) * align;
if ws.e.offset_from(ws.f) < aligned_sz as isize {
ptr::null_mut()
} else {
let p = ws.f.cast::<c_void>();
ws.f = ws.f.add(aligned_sz);
p
}
}
}
/// Check if a pointer is part of the current workspace
pub fn contains(&self, data: &[u8]) -> bool {
unsafe { WS_Allocated(self.raw, data.as_ptr().cast(), data.len() as isize) == 1 }
}
/// Allocate `[u8; size]` array on Workspace.
/// Returns a reference to uninitialized buffer, or an out of memory error.
pub fn allocate(&mut self, size: NonZeroUsize) -> Result<&'a mut [MaybeUninit<u8>], VclError> {
let ptr = unsafe { self.alloc(size) };
if ptr.is_null() {
Err(VclError::WsOutOfMemory(size))
} else {
Ok(unsafe { from_raw_parts_mut(ptr.cast(), size.get()) })
}
}
/// Allocate `[u8; size]` array on Workspace, and zero it.
pub fn allocate_zeroed(&mut self, size: NonZeroUsize) -> Result<&'a mut [u8], VclError> {
let buf = self.allocate(size)?;
unsafe {
buf.as_mut_ptr().write_bytes(0, buf.len());
Ok(slice_assume_init_mut(buf))
}
}
/// Allocate memory on Workspace, and move a value into it.
/// The value will be dropped in case of out of memory error.
pub(crate) fn copy_value<T>(&mut self, value: T) -> Result<&'a mut T, VclError> {
let size = NonZeroUsize::new(size_of::<T>())
.unwrap_or_else(|| panic!("Type {} has sizeof=0", type_name::<T>()));
let val = unsafe { self.alloc(size).cast::<T>().as_mut() };
let val = val.ok_or(VclError::WsOutOfMemory(size))?;
*val = value;
Ok(val)
}
/// Copy any `AsRef<[u8]>` into the workspace
fn copy_bytes(&mut self, src: impl AsRef<[u8]>) -> Result<&'a [u8], VclError> {
// Re-implement unstable `maybe_uninit_write_slice` and `maybe_uninit_slice`
// See https://github.com/rust-lang/rust/issues/79995
// See https://github.com/rust-lang/rust/issues/63569
let src = src.as_ref();
let Some(len) = NonZeroUsize::new(src.len()) else {
Err(VclError::CStr(c"Unable to allocate 0 bytes in a Workspace"))?
};
let dest = self.allocate(len)?;
dest.copy_from_slice(maybe_uninit(src));
Ok(unsafe { slice_assume_init_mut(dest) })
}
/// Copy any `AsRef<[u8]>` into a new [`VCL_BLOB`] stored in the workspace
pub fn copy_blob(&mut self, value: impl AsRef<[u8]>) -> Result<VCL_BLOB, VclError> {
let buf = self.copy_bytes(value)?;
let blob = self.copy_value(vrt_blob {
blob: ptr::from_ref(buf).cast::<c_void>(),
len: buf.len(),
..Default::default()
})?;
Ok(VCL_BLOB(ptr::from_ref(blob)))
}
/// Copy any `AsRef<CStr>` into a new [`txt`] stored in the workspace
pub fn copy_txt(&mut self, value: impl AsRef<CStr>) -> Result<txt, VclError> {
let dest = self.copy_bytes(value.as_ref().to_bytes_with_nul())?;
Ok(bytes_with_nul_to_txt(dest))
}
/// Copy any `AsRef<CStr>` into a new [`VCL_STRING`] stored in the workspace
pub fn copy_cstr(&mut self, value: impl AsRef<CStr>) -> Result<VCL_STRING, VclError> {
Ok(VCL_STRING(self.copy_txt(value)?.b))
}
/// Same as [`Workspace::copy_blob`], copying bytes into Workspace, but treats bytes
/// as a string with an optional NULL character at the end. A `NULL` is added if it is missing.
/// Returns an error if `src` contain NULL characters in a non-last position.
pub fn copy_bytes_with_null(&mut self, src: impl AsRef<[u8]>) -> Result<txt, VclError> {
let src = src.as_ref();
match memchr(0, src) {
Some(pos) if pos + 1 == src.len() => {
// Safe because there is only one NULL at the end of the buffer.
self.copy_txt(unsafe { CStr::from_bytes_with_nul_unchecked(src) })
}
Some(_) => Err(VclError::CStr(c"NULL byte found in the source string")),
None => {
// NUL byte not found, add one at the end
// Similar to copy_bytes above
let len = src.len();
let dest = self.allocate(unsafe { NonZeroUsize::new_unchecked(len + 1) })?;
dest[..len].copy_from_slice(maybe_uninit(src));
dest[len].write(b'\0');
let dest = unsafe { slice_assume_init_mut(dest) };
Ok(bytes_with_nul_to_txt(dest))
}
}
}
/// Allocate all the free space in the workspace in a buffer that can be reclaimed or truncated
/// later.
///
/// Note: don't assume the slice has been zeroed when it is returned to you, see
/// [`ReservedBuf::release()`] for more information.
pub fn reserve(&mut self) -> ReservedBuf<'a> {
let ws = unsafe { validate_ws(self.raw) };
unsafe {
let sz = ffi::WS_ReserveAll(ws) as usize;
let buf = from_raw_parts_mut(ws.f.cast::<u8>(), sz);
ReservedBuf {
buf,
wsp: self.raw,
b: ws.f.cast::<u8>(),
len: 0,
}
}
}
}
/// Internal helper to convert a `&[u8]` to a `&[MaybeUninit<u8>]`
fn maybe_uninit(value: &[u8]) -> &[MaybeUninit<u8>] {
// SAFETY: &[T] and &[MaybeUninit<T>] have the same layout
// This was copied from MaybeUninit::copy_from_slice, ignoring clippy lints
unsafe {
#[allow(clippy::transmute_ptr_to_ptr)]
transmute(value)
}
}
/// Internal helper to convert a `&mut [MaybeUninit<u8>]` to a `&[u8]`, assuming all elements are initialized
unsafe fn slice_assume_init_mut(value: &mut [MaybeUninit<u8>]) -> &mut [u8] {
// SAFETY: Valid elements have just been copied into `this` so it is initialized
// This was copied from MaybeUninit::slice_assume_init_mut, ignoring clippy lints
#[allow(clippy::ref_as_ptr)]
&mut *(value as *mut [MaybeUninit<u8>] as *mut [u8])
}
/// Helper to convert a byte slice with a null terminator to a `txt` struct.
fn bytes_with_nul_to_txt(buf: &[u8]) -> txt {
txt::from_cstr(unsafe { CStr::from_bytes_with_nul_unchecked(buf) })
}
/// The free region of the workspace. The buffer is fully writable but must be finalized using
/// `release()` to avoid being reclaimed when the struct is dropped.
///
/// Because [`ReservedBuf::release()`] starts counting at the beginning of the slice and because the
/// `Write` traits will actually move that same beginning of the slice, you can
/// `reserve/write/release(0)`:
///
/// ``` ignore
/// // write trait needs to be in scope
/// use std::io::Write;
/// use varnish::vcl::TestWS;
///
/// // init a workspace
/// let mut test_ws = TestWS::new(160);
/// let mut ws = test_ws.ws();
///
/// // first reservation gets the full buffer
/// let mut r = ws.reserve();
/// assert_eq!(r.buf.len(), 160);
///
/// // release AFTER the part we've written
/// r.buf.write(b"0123456789").unwrap();
/// assert_eq!(r.release(0), b"0123456789");
///
/// {
/// // second reservation get 160 - 10 bytes
/// let r2 = ws.reserve();
/// assert_eq!(r2.buf.len(), 150);
/// // the ReservedBuf goes out of scope without a call to .release()
/// // so now data is fully allocated
/// }
///
/// let r3 = ws.reserve();
/// assert_eq!(r3.buf.len(), 150);
/// ```
#[derive(Debug)]
pub struct ReservedBuf<'a> {
/// The reserved buffer
pub buf: &'a mut [u8],
wsp: *mut ffi::ws,
b: *mut u8,
len: usize,
}
impl<'a> ReservedBuf<'a> {
/// Release a [`ReservedBuf`], returning the allocated and now truncated buffer.
///
/// # Safety
///
/// `release` doesn't wipe the unused part of the buffer, so you should not assume that the
/// slice is pristine when you receive it.
///
/// ``` ignore
/// use varnish::vcl::TestWS;
/// let mut test_ws = TestWS::new(160);
/// let mut ws = test_ws.ws();
///
/// let r = ws.reserve();
/// r.buf[..9].copy_from_slice(b"IAmNotZero");
/// r.release(0);
///
/// let r2 = ws.reserve();
/// assert_eq!(&r2.buf[..9], b"IAmNotZero");
/// ```
pub fn release(mut self, sz: usize) -> &'a mut [u8] {
unsafe {
self.len = self.buf.as_ptr().add(sz).offset_from(self.b) as usize;
from_raw_parts_mut(self.b, self.len)
}
}
}
impl<'a> Drop for ReservedBuf<'a> {
fn drop(&mut self) {
unsafe {
ffi::WS_Release(validate_ws(self.wsp), self.len as u32);
}
}
}
/// A struct holding both a native ws struct and the space it points to.
///
/// As the name implies, this struct mainly exist to facilitate testing and should probably not be
/// used elsewhere.
#[derive(Debug)]
pub struct TestWS {
c_ws: ffi::ws,
#[allow(dead_code)]
space: Vec<c_char>,
}
impl TestWS {
/// Instantiate a `C` ws struct and the required space of size `sz`.
pub fn new(sz: usize) -> Self {
let al = align_of::<*const c_void>();
let aligned_sz = (sz / al) * al;
let mut v: Vec<c_char> = vec![0; sz];
let s = v.as_mut_ptr();
Self {
c_ws: ffi::ws {
magic: ffi::WS_MAGIC,
id: ['t' as c_char, 's' as c_char, 't' as c_char, '\0' as c_char],
s,
f: s,
r: ptr::null_mut(),
e: unsafe { s.add(aligned_sz) },
},
space: v,
}
}
/// Return a pointer to the underlying C ws struct. As usual, the caller needs to ensure that
/// self doesn't outlive the returned pointer.
pub fn as_ptr(&mut self) -> *mut ffi::ws {
ptr::from_mut::<ffi::ws>(&mut self.c_ws)
}
/// build a `Workspace`
pub fn workspace(&mut self) -> Workspace {
Workspace::from_ptr(self.as_ptr())
}
}
#[cfg(test)]
mod tests {
use std::num::NonZero;
use super::*;
#[test]
fn ws_test() {
let mut test_ws = TestWS::new(160);
let mut ws = test_ws.workspace();
for _ in 0..10 {
unsafe {
assert!(!ws.alloc(NonZero::new(16).unwrap()).is_null());
}
}
unsafe {
assert!(ws.alloc(NonZero::new(1).unwrap()).is_null());
}
}
}